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Abstract

Using a comprehensive meta-analysis combined with new experiments, we show
that identical choice options elicit systematically different behavior if presented one-
by-one versus bundled into choice lists. In particular, we find that the canonical
fourfold pattern of risk attitudes in choice lists morphs into a robust twofold pattern
in binary choice. No model of utility maximization can account for these results,
given that choices are identical across contexts. This raises profound questions
about prospect theory, which puts the fourfold pattern center stage. We propose
(and empirically test) a model based on noisy cognition that organizes our results,
and argue that endogenizing parameters of standard models provides a promising
way of counteracting their predictive shortcomings.

The most distinctive implication of prospect theory is the fourfold pattern of risk atti-
tudes

Tversky & Kahneman (1992)

1 Introduction

Risk-attitudes have traditionally been modeled using stable preference functionals ap-

plied to fully described and objectively perceived choice primitives. Here, we show that

identical choice options will elicit systematically different behavior depending on whether

they are presented one at a time, or bundled into choice lists. Our finding gets its sig-

nificance from the observation that our results cannot be organized by any model of
∗Ranoua Bouchouicha and Ferdinand Vieider gratefully acknowledge funding from the Research Foun-

dation—Flanders (FWO) under the project “Causal Determinants of Preferences” (G008021N). Previous
versions of this manuscript were circulated under the titles “Choice lists and ‘standard patterns’ of risk-
taking” and “Is Prospect Theory Really a Theory of Choice?”. We are indebted to Mohammed Abdel-
laoui, Ben Enke, Thomas Epper, Paul Feldman, Olivier L’Haridon, Pietro Ortoleva, Larry Samuelson,
and Christian Walter for helpful comments and discussions. All errors remain our own.
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utility maximization, given that the choices themselves are identical across contexts. We

further show that the canonical fourfold patter of risk attitudes predicted by prospect

theory — risk aversion for most gains and small probability losses, risk seeking for small

probability gains and most losses — turns into a twofold pattern over standard probabil-

ity ranges in binary choice. This result raises deep questions about the nature and scope

of prospect theory, which we discuss in light of an endogenous noisy cognition account

of risk taking we propose to organize our findings.

Meta analysis. Meta-analytically re-evaluating data from decades of prior research, we

show that the fourfold pattern does not in fact occur in direct choice between lotteries,

but only in experiments that explicitly elicit certainty equivalents, e.g. when choices are

bundled into choice lists.1 By contrast, direct binary choices between lotteries produces

a nearly universal twofold pattern of risk attitudes over the same probability range:

consistent risk aversion for gains, and consistent risk seeking for losses.2 Despite being

pervasive in prior data, this disjunction between binary choices and bundled choices

has gone mostly unnoticed in the literature, with the important exception of Harbaugh,

Krause and Vesterlund (2010) who (to our knowledge) were the first to report evidence

that the fourfold pattern fails to appear in binary choice.

Motivated in part by the intriguing finding by Harbaugh, Krause and Vesterlund, 2010

that the fourfold pattern obtains in valuation tasks but not in a binary choice task,

we examine to what degree this same disjunction is reflected in the long prior literature

estimating prospect theory parameters on experimental data. To investigate, we conduct

a meta-analysis in which we search for all prior papers that (i) use data from standard

choice list tasks or data from simply binary choices; and that also (ii) estimate PT

parameters on those data. We then use the estimated PT parameters to predict certainty

equivalents, allowing us to make inferences about the average patterns of risk-taking in

the different papers. The results paint a surprisingly clear picture. Estimates from

prior choice list tasks overwhelmingly produce evidence for the full fourfold pattern. By
1The fourfold pattern has also been documented using valuation tasks, such as willingness to pay —

see e.g. Chapman et al. (2023a) for the similarity between choice lists and valuations. Here, we focus
on choice lists in order to show contradictions for tasks with identical constituent parts.

2It is important to clarify that we do not claim that no risk seeking for gains or risk aversion for
losses can exist, no matter how small the probabilities or how large the outcomes. Such patterns have
indeed been documented e.g. by Chark, Chew and Zhong (2020) and Ruggeri et al. (2020). Our point is
rather that over typical probability ranges that are identical across the elicitation formats, the fourfold
pattern occurs robustly in one format (choice lists) but not in the other (binary choice).
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contrast estimates from prior binary choice tasks virtually never do. Instead, binary

choice produces a very different “twofold pattern” of global risk aversion for gains and

risk-seeking for loss. This analysis suggests that we have in some sense “known” that

the fourfold pattern doesn’t really predict binary choice all along, but the literature has

somehow largely been unaware of this fact.

How did the literature fail to notice this? Simply put, we think this occurred because

of an emphasis in the literature on estimates of the individual theoretical components

of PT relative to the core empirical patterns that theory was designed to explain. PT

consists of two theoretical components that jointly determine risk attitudes: an inverse-S

shaped probability weighting function and an S-shaped utility function (analogous to a

reference-dependent version of a standard utility function). Estimates on both binary

choice and choice list data have produced structural estimates consistent with inverse-S

shaped probability weighting, but this is not sufficient to establish the fourfold pattern

because of the confounding influence of utility curvature, which is typically estimated

as much more severe in binary choice than in choice list tasks. The literature, however,

has typically not put these estimates together to assess their joint implications for the

(fourfold) pattern the theory predicts.

Experimental evidence. Experiments deploying binary choices versus choice lists

in the prior literature have typically not been designed with an eye to comparability

between the two formats. Differences in the meta-analytic patterns we document could

thus in principle arise from differences in the number and types of choices subjects face

in the two settings. To test whether such factors are driving this result, we design a

new experiment that presents identical choices between a lottery and sure amounts of

money, presented either one-per-screen (our ‘binary choice’ tasks) or bundled into choice

lists (what we call ‘choice list’ tasks).3 Because these tasks include identical component

lottery choices, they are indistinguishable under the lens of standard models of utility

maximization, providing a maximally stringent test of the hypothesis that binary choice
3Throughout the paper, we reserve the term “choice list” for the type of tasks used to elicit certainty

equivalents – the monetary values obtained for sure people consider to be equally good as playing the
lottery. These indifferences are generally elicited in the prospect theory literature, including by Tversky
and Kahneman (1992). However, there is also evidence that choice lists keeping the sure payments
constant and vary the probability in a list produce very different findings on, e.g., probability weighting
(e.g. Feldman and Ferraro, 2023; Shubatt and Yang, 2024). These studies show that the standard
inverse-S shape of the probability weighting function measured with certainty equivalents reverses into
an S-shaped function when using probability equivalents instead.
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and choice lists produce fundamentally different behavior.

We find dramatic differences in behavior across these two settings that are consistent with

our meta-analytic findings. In our choice list tasks we find highly conventional evidence

of the fourfold pattern. In our binary choice tasks, by contrast, the fourfold pattern

collapses: risk seeking disappears for small probability gains and risk aversion disappears

for small probability losses. The fourfold pattern in choice lists is thus replaced by a

consistent twofold pattern in binary choice, just as in our meta-analysis.4 Because our

design consists of identical choices, this finding suggests that the differences between the

two tasks are entirely driven by the difference in the presentation – a difference that

should not matter under any standard utility-based model. A tempting explanation

is that (perhaps) this occurs because binary choice is more difficult than choice lists,

preventing a true, latent fourfold pattern from expressing itself due to an increase in

noisy behavior. However, the data is starkly inconsistent with such an explanation — if

anything it suggests the opposite pattern of reduced noise in binary choice.

Implications. We view these findings as having two primary implications. First, our

findings inform a long-running debate in the PT literature about whether the theory

should be interpreted as a description of (i) a suite of cognitive adaptations and shortcuts

that generate its distinctive patterns; or (ii) what economists would usually think of

as a standard sort of preference — a reflection of stable tastes for risk with welfare

implications. We interpret the systematic violation of procedural invariance shown by

our re-examination of the literature — and confirmed in our new experiments — as

providing evidence in favor of the cognitive shortcuts interpretation, (i).

Second, we view these findings as informing the question of whether there is value in

complementing tractable descriptive theories like PT with models that more explicitly

model the cognitive processes underlying the anomalies it describes. We view the fact

that a key diagnostic pattern at the heart of the theory (the fourfold pattern) robustly

varies with choice context (and disappears in a setting as important as direct binary

choice) as strong evidence that pursuing such models may be in fact quite valuable.
4Note that we do not claim claim that there cannot possibly be a fourfold pattern in binary choice

for any probabilities. Such patterns may well still occur for extremely small probabilities, but this is
difficult to test using incentivized choice-based designs. Our argument rests purely on the observations
that — for identical choices over typical probability ranges used in the majority of studies investigating
these issues — choice lists produce a fourfold pattern, whereas binary choice does not.
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One way of seeing such cognitive models is indeed as a way to endogenously account of

the origin of the descriptive parameters estimated in PT settings (Vieider, 2025). Seen

through this lens, explicit models of the cognitive processes generating observed choice

behavior hold the promise of restoring some of the predictive value to descriptive models

that they would otherwise risk losing.

Theoretical Mechanism and Experimental Validation. Given this, we next pro-

pose and experimentally validate an explanation that builds on the idea that observed

choice patterns may be the result of cognitive frictions in information processing rather

than stable tastes for risk. Our explanation builds on a series of recent findings suggest-

ing that likelihood-dependence in risk-taking may arise from cognitive frictions, and the

optimal mechanism the mind uses to overcome these limitations (Robson, 2001; Netzer,

2009; Khaw, Li and Woodford, 2021; 2023; Vieider, 2024; Enke and Graeber, 2023; Fry-

dman and Jin, 2023; Glimcher and Tymula, 2023; Barretto-García et al., 2023; Netzer

et al., 2024; Oprea, 2024b; Oprea and Vieider, 2024). Such approaches are often inspired

by findings in neuroscience, and rest on the premise that explicitly modeling the process

by which choice options are assessed and decisions are formed can improve the predictive

ability of models of decision-making.

Our model is based on a simple intuition. In binary choice, it seems natural to separately

assess the odds of winning in a lottery and the relative rewards offered by the different

options, and to then trade off these dimensions to reach a decision (Vieider, 2024). Choice

lists, on the other hand, seem to activate a different process, whereby the fixed element in

the list — the lottery in the case of certainty equivalent lists — is evaluated first. From a

cognitive point of view, the problem then consists in finding the value of this lottery, and

matching it with an equivalent sure amounts (see also Khaw, Li and Woodford, 2023).

Even though the cognitive processes at work are the same, the different ways in which

they are applied depending on the choice context will result in different predictions. We

experimentally test these predictions by presenting information sequentially in a binary

choice setting, thus trying to trigger the sequential evaluation mode of choice lists in a

binary choice setting. As predicted by our model, choice patterns in such a sequential

evaluation model converge towards those observed in choice list settings, thus providing

supporting evidence for a key mechanism underlying our model.

Relation to prior work. Our work is most closely related to Harbaugh, Krause and
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Vesterlund (2010), who compare willingness-to-pay (elicited using the BDM mechanism)

for lotteries to binary choices between the same lotteries and their expected value. They

recover the fourfold pattern in willingness-to-pay but find choice behavior that is “indis-

tinguishable from random choice” in the lottery choices (p. 595). The paper is seminal for

introducing evidence of differences between valuation tasks and binary choice in expres-

sions of the fourfold pattern, and in showing that the fourfold pattern fails to manifest

in binary choice. Relative to this paper, our contribution is to (i) use a large-scale meta-

alaysis that re-examines the sum-total of PT estimations from choice lists and binary

choice to show that binary choice in fact produces a consistent two-fold pattern of risk-

taking; (ii) run experiments with much richer choice stimuli that allow us to directly

compare the certainty equivalents underlying binary choice to directly elicited certainty

equivalents; (iii) use identical choice situations presented one-by-one vs packaged into

choice list, producing an especially stringent test of the relationship between the two; and

(iv) present and test a theoretical account of what drives differences in observed behavior.

Our conclusions also differ in an important sense from theirs: while they conclude that

binary choice produces patterns ‘indistinguishable from random behavior’, we are able

to show using our much richer array of choice tasks that in fact binary choice produces

a consistent two-fold pattern that is overall less random than elicitations.5

Our work is more broadly related to a long literature in psychology and economics show-

ing that decision under risk often fails procedural invariance: measured risk preferences

often depend in systematic ways on the method of elicitation used. These effects have

been documented at least since Slovic (1964), and have periodically resurfaced in the

literature in many different contexts (e.g., Hershey and Schoemaker, 1985; Crosetto and

Filippin, 2015; Mata et al., 2018; Friedman et al., 2017; Zhou and Hey, 2018; Friedman

et al., 2022), often yielding evidence broadly consistent with ours. In a recent paper

McGranaghan et al. (2024) show that Choice and Equivalence generate often very dif-

ferent evidence in favor of the common ratio effect, and argue that this is driven by

the differential effects of noise in the two settings. Relative to much of this literature,

the procedural invariance violations we document are particularly striking because they

appear in choice lists and binary choices that consist of an identical set of constituent
5This difference in conclusion is due to the fact that while Harbaugh, Krause and Vesterlund (2010)

examine only a single binary choice for each lottery, we study a large number of binary choices. This
allows us to sharply measure the certainty equivalent rationalizing binary choices and conduct a sharper
head-to-head comparison with direct elicitations.

6



decisions.

Closely related is a literature on “preference reversals” which shows that apparent prefer-

ences over lotteries often flip when elicited via binary choice versus valuation (buying or

selling prices of a lottery; Lichtenstein and Slovic, 1971; Grether and Plott, 1979). Mod-

ern versions of prospect theory allow researchers to explain such preference reversals via

loss aversion, due to the differing implicit endowments in choice versus valuation tasks

(Schmidt, Starmer and Sugden, 2008). The violations of procedural invariance we doc-

ument involve identical choices without variation in endowments, meaning they cannot

be explained in this way. Indeed, we show empirically that even allowing for endogenous

reference points cannot account for our results via prospect theory.6

Methodologically, the closest work to ours is a recent series of papers that compares choice

lists and choice behavior by (i) having subjects make decisions in multiple price lists and

(ii) having subjects also make decisions in the “stacked” choices of the lists individually

and in a random order. Lévy-Garboua et al. (2012) compared choices in the task of

Holt and Laury (2002) to the underlying binary decisions, and documented higher levels

of risk aversion and increased noise in binary choices. Freeman, Halevy and Kneeland

(2019) also compared risky choices obtained from a choice list to risky choices in a single

binary choice, and found significantly more risk aversion in binary choice. They ascribed

this effect to the random incentive mechanism (however, see Freeman and Mayraz, 2019,

for an account contradicting this explanation). Revisiting this issue, Brown and Healy

(2018) conclude that incentive-compatibility is guaranteed by randomly paying one of

several choices presented in a binary choice mechanism in random order. These papers

examine only one multiple price list and one collection of corresponding binary Choice

problems. One of our main contributions relative to these papers is to study multiple

choice lists, and multiple corresponding collections of binary Choice tasks. This allows

us to paint a much richer picture of the factors driving decisions, and to use the resulting

patterns to test the predictive ability of PT.

Finally, our paper relates to a growing movement in economics that attempts to re-

interpret anomalies under the lens of domain-general cognitive frictions rather than

domain-specific preferences or errors (Enke, 2024; Enke et al., 2024; Oprea, 2024a).
6Shubatt and Yang (2024) offer a cognitive explanation for preference reversals, rooted in the noise

generated by the complexity of comparing lotteries — an explanation that is related to our model and
is broadly consistent with many of our findings.
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Most relevant for our purposes is a growing literature on noisy cognition, which explains

anomalies as growing out of the imprecise ways constrained brains represent information

and the biases produced by Bayesian responses to this noise. These models can explain

many aspects of prospect theory, including probability weighting (Vieider, 2024; Khaw,

Li and Woodford, 2023; Frydman and Jin, 2023; Glimcher and Tymula, 2023; Netzer

et al., 2024) and tests of these models have been highly empirically successful (Naten-

zon, 2019; Prat-Carrabin and Woodford, 2022; Enke and Graeber, 2023; Barretto-García

et al., 2023; Oprea and Vieider, 2024). We use a model in this class to explain our main

findings, and test that model using a novel experiment, adding to this accumulation of

evidence.

2 Reassessing the Literature

Harbaugh, Krause and Vesterlund (2010) famously showed that the fourfold pattern — a

canonical pattern of risk-taking when using choice lists or valuation tasks — disappeared

in binary choice between lotteries and their expected values, instead giving way to ran-

dom choice. Here, we take advantage of the fact that PT parameters have been estimated

from both choice lists and binary choices to contrast regularities in the two formats. We

limit ourselves to choice lists and binary choice because — at least in principle — they

are both made up of the same component parts, i.e. individual choices between lotteries

with different variances and expected values. This will allow us to assess the generality

of differences between choice lists and binary choice, as well as providing a more solid

grounding for discussing the nature of such differences.

In Section 2.1 we collect all relevant prospect theory estimates from the prior literature

and use these estimates to assess (using imputed certainty equivalents implied by these

estimates) whether the fourfold pattern occurred in choice lists but not binary choice.

This systematic re-examination of the literature confirms one key finding by Harbaugh,

Krause and Vesterlund (2010): that the fourfold pattern does not occur in binary choice,

but does occur in choice lists. The data also enable us to further qualify this finding:

at least over the typical probability ranges examined in the literature, binary choice

produces a clear twofold pattern of risk-taking — risk aversion for gains, and risk seeking

for losses. This finding goes beyond what Harbaugh, Krause and Vesterlund (2010)

reported, since their binary choices were simply not optimized for the detection of risk-
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taking behavior (beyond whether there is a fourfold pattern or not). In Section 3.2 we

interpret this finding and discuss why the prospect theory literature has mostly failed

to notice that its “most distinctive implication” does not actually occur in the decision

environment (direct choice) the theory was ultimately designed to predict.

2.1 Meta-analysis

In order to meta-analyze evidence on the fourfold pattern from the prior literature, we

collect estimates of the parameters of PT functionals from dozens of prior papers. Most

of the prior literature relevant to the fourfold pattern summarize their data by reporting

estimates of PT parameters including those from (i) a probability weighting function

and (ii) a utility function. Our approach is therefore to calculate certainty equivalents

based on these past estimates and examine how often these calculations show evidence

of the pattern in both choice list tasks and binary choice tasks.

Inclusion criteria. We began by collecting all PT estimates from the prior literature

that can be used to contrast the fourfold pattern in choice lists and binary choices. Our

inclusion criteria were that 1) estimates should stem either from a pure choice list setup

or a pure binary choice setup (thus excluding hybrid elicitation mechanisms such as

choice lists filled in based on a bisection procedure)7; and 2) for the paper to present an

estimation of PT parameters. The latter criterion ensures that we can use the reported

PT parameters to infer a predicted CE for a given probability and outcome, and thus to

have comparable quantities. We conducted a literature search in the spring of 2023. The

search procedures followed closely those of the meta-analysis on loss aversion of Brown

et al. (2024). We then read though the abstracts and excluded papers that clearly did

not meet our criteria. We subsequently read all papers that had passed this initial stage,

and encoded the PT parameters.

Analysis Approach. For each paper, we use PT estimates to calculate a predicted

certainty equivalent (CE), ĉ = u−1[w(p)u(x)], where u designates the utility function, w

the probability weighting function, and u−1 the inverse of the utility function. In what

follows, we use x = 100 and probabilities p = 0.1 and p = 0.9 to calculate certainty

equivalents at low and high probabilities, but the qualitative results do not change much
7We decided to include papers that used a list format, but used 2 or more stages to zoom in on the

precise CE. This allowed us to include e.g. the seminal papers of Tversky and Kahneman (1992) and
Gonzalez and Wu (1999) in the analysis.
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for different monetary outcomes or even more extreme probabilities (see Online Appendix

B).8

We obtain standard errors for the predicted CEs by applying a bootstrap procedure.

We assume the parameters to be normally distributed around their mean estimate with

variance equal to the squared standard error of the parameter (as customary in meta-

analysis). By drawing repeatedly from the uncertainty intervals surrounding the param-

eters and using the draws to calculate a vector of CEs, we can obtain an approximation

of the standard errors surrounding our mean estimate of the predicted CE. Online Ap-

pendix B contains the details of the procedure and presents an overview of the imputed

CEs for different studies.

Obtaining standard errors allows us to apply Bayesian meta-analytic procedures to the

data, weighing each observation by the inverse of its variance (see e.g. Brown et al., 2024).

This procedure is of course only as good as the data we feed into it. The bootstrapped

standard errors especially could be affected by differences in estimation methods, and

functional and modeling assumptions across studies. Our calculation procedure also

implicitly assumes that errors across parameters are independent, and may over-estimate

the standard errors of the calculated CEs if that assumption does not hold. To counter-

act these issues, we will present a number of robustness checks. In particular, we will

present simple averages of the point estimates, and approximate standard errors by

making them proportional to the inverse of the square root of the sample size.

Results. As expected, we find robust evidence of the fourfold pattern in prior choice

list studies. Figures 1 and 2, Panel A, show estimates for Gains for p = 0.1 and p = 0.9

respectively. At p = 0.1 all but a handful of estimates fall far to the right of 0.1,

indicating risk seeking, with an average meta-analytic normalized certainty equivalent

of 0.180, with a 95% credible interval of [0.160, 0.201]. At p = 0.9 we find the opposite,

with all estimates falling to the left of 0.9 with an average meta-analytic normalized

certainty equivalent of 0.721, with a 95% credible interval of [0.693, 0.748]. Panel A in

Figures 3 and 4 shows that each of these risk postures “flip” in choice lists studies under
8The reason for using probabilities of 0.1 and 0.9 is that these are often the most extreme probabilities

included in the studies. Extrapolations to more extreme probabilities should thus be consumed with some
caution. Likewise $100 was an amount often used in the early literature. Since we use CRRA coefficients
in our computations, which are indeed estimated in the great majority of papers, the monetary amounts
used do not have much influence on our conclusions.
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Figure 1: Forest plot of inferred CEs for a wager (100, 0.1), gains
Forest plot of calculated CEs, normalized as ĉ

100
to be directly comparable to the probability of winning,

and 95% credible intervals. Panel A summarizes CEs inferred from choice list studies using elicited cer-
tainty equivalents to measure risk attitudes, whereas panel B shows CEs inferred from studies using binary
choices to obtain PT parameters. The navy blue triangles indicate calculated data points, while the light
blue squares indicate the meta-analytic posterior. The vertical dashed lines with the shaded green region
surrounding it represents the meta-analytic average with its 95% credible interval. Dotted confidence in-
tervals stem from studies which did not report statistical information for the reported PT parameters, and
for which we thus had to impute the SEs as missing data (see online appendix for details).

Losses. At p = 0.1 (pictured in Figure 3), the meta-analytic mean for the 20 studies

again falls far to the right of 0.1, which in losses now indicate risk aversion (mean: 0.212;
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Figure 2: Forest plot of inferred CEs for a wager (100, 0.9), gains
Forest plot of calculated CEs, normalized as ĉ

100
to be directly comparable to the probability of winning,

and 95% credible intervals. Panel A summarizes CEs inferred from choice list studies using elicited cer-
tainty equivalents to measure risk attitudes, whereas panel B shows CEs inferred from studies using binary
choices to obtain PT parameters. The navy blue triangles indicate calculated data points, while the light
blue squares indicate the meta-analytic posterior. The vertical dashed lines with the shaded green region
surrounding it represents the meta-analytic average with its 95% credible interval. Dotted confidence in-
tervals stem from studies which did not report statistical information for the reported PT parameters, and
for which we thus had to impute the SEs as missing data (see online appendix for details).

CrI: [0.170 , 0.256]). At p = 0.9 (pictured in Figures 4), the meta-analytic mean for the

20 studies flips again, now falling far to the left of 0.9, indicating risk seeking in losses
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(mean: 0.764; CrI: [0.736, 0.790]). Thus, in prior choice list studies, with few exceptions,

we calculate certainty equivalents indicating risk seeking for low- and risk aversion for

high-probability gains, and the reverse in each case for losses. In elicitatoins using choice

lists, the fourfold pattern appears to be extremely robust.

Our main finding is that this pattern collapses in binary choice studies. Panel B in

each Figure plots data from these studies. In Figure 1 we find that, in violation of the

fourfold pattern, the meta-analytic mean is 0.040 with a credible interval of [0.029, 0.051],

indicating a certainty equivalent less than 0.1 and therefore risk aversion. Indeed, almost

all studies yield risk averse certainty equivalents, with no statistically significant results

indicating the fourfold pattern’s predictions of risk seeking. This risk aversion remains

at 0.9 in Figure 2 (mean: 0.746; CrI: [0.701, 0.788]]), suggesting that unlike in choice

lists subjects display uniform risk aversion in the gains domain in prior experiment

using binary choices. In Losses, at p = 0.1 (Figure 3) the meta-analytic mean is 0.074

with a credible interval of [0.054, 0.097], indicating modest risk seeking. Though the

data are more mixed here, only one study shows statistically significant evidence of the

risk-aversion predicted by the fourfold pattern, whereas 8 are significant in the opposite

direction. At p = 0.9 (Figure 4) we continue to find evidence of risk seeking in losses in

the meta-analytic mean (mean: 0.784; CrI: [0.714, 0.842]), suggesting that subjects are

reliably risk seeking in losses regardless of probability.

Thus overall, the fourfold pattern collapses into a twofold pattern in binary choice:

consistent risk aversion in gains and consistent risk seeking in losses.

Robustness. Meta-analysis can suffer from data problems, meaning robustness checks

are especially important to verify our statistical findings. Information on standard errors

is not always reported or available in past studies. Even when such information is

available, the statistical evidence provided may be inaccurate. This holds all the more

in our case, since we need to simulate the standard errors of the calculated CEs from

a combination of PT parameters. To test the robustness of the results, we can instead

calculate the simple means of the CEs calculated from the parameter point-estimates.

The mean normalized CE calculated from choice list studies for gains at p = 0.1 is 0.186

(median 0.182) and at p = 0.9 is 0.707 (median 0.726). The mean normalized CE from

choice list studies for losses is 0.231 (median 0.230) at p = 0.1 and 0.774 (median 0.765)

at p = 0.9. The calculated CE for gains from binary choice studies is 0.045 (median
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Figure 3: Forest plot of inferred CEs for a wager (100, 0.1), losses
Forest plot of calculated CEs, normalized as ĉ

100
to be directly comparable to the probability of winning,

and 95% credible intervals. Panel A summarizes CEs inferred from choice list studies using elicited cer-
tainty equivalents to measure risk attitudes, whereas panel B shows CEs inferred from studies using binary
choices to obtain PT parameters. The navy blue triangles indicate calculated data points, while the light
blue squares indicate the meta-analytic posterior. The vertical dashed lines with the shaded green region
surrounding it represents the meta-analytic average with its 95% credible interval. Dotted confidence in-
tervals stem from studies which did not report statistical information for the reported PT parameters, and
for which we thus had to impute the SEs as missing data (see online appendix for details).

0.036) at p = 0.1 and 0.752 (median 0.773) at p = 0.9. The mean relative CE for losses

is 0.079 (median 0.069) at p = 0.1 and 0.765 (median 0.800) at p = 0.9. Thus our

main findings continue to strongly hold. While there is overwhelming evidence for the

fourfold pattern in PT estimates obtained from direct choice list elicitation, estimates

based on binary choice indicate a twofold pattern – risk aversion for gains, and risk

seeking for losses. In Online Appendix B we report two additional robustness checks.

Following the recommendation of Furukawa et al. (2006), we use the average standard

deviation in studies in which we can obtain it, and then divide this standard deviation

by the square root of the sample size to derive standard errors. All of our results are

robust to this additional robustness check. Furthermore, we conduct a series of meta-

regressions, controlling for number of outcomes in the lottery, whether incentives are

real or hypothetical, whether one of the two options consisted of a sure payment (in

binary choice), and a variety of study and estimation characteristics. Once again, our

key results are unaffected when controlling for such potential differences between studies,
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Figure 4: Forest plot of inferred CEs for a wager (100, 0.9), losses
Forest plot of calculated CEs, normalized as ĉ

100
to be directly comparable to the probability of winning,

and 95% credible intervals. Panel A summarizes CEs inferred from choice list studies using elicited cer-
tainty equivalents to measure risk attitudes, whereas panel B shows CEs inferred from studies using binary
choices to obtain PT parameters. The navy blue triangles indicate calculated data points, while the light
blue squares indicate the meta-analytic posterior. The vertical dashed lines with the shaded green region
surrounding it represents the meta-analytic average with its 95% credible interval. Dotted confidence in-
tervals stem from studies which did not report statistical information for the reported PT parameters, and
for which we thus had to impute the SEs as missing data (see online appendix for details).

suggesting that they are not driven by systematic differences in procedures or estimation

techniques in choice lists versus Choice.

Likelihood insensitivity. Finally, our meta-analytic evidence suggests that, as in our

experiment, likelihood insensitivity is sharply attenuated in past binary choice data rela-

tive to choice list data. Figure 5 plots empirical CDFs of the likelihood-sensitivity index

(mirroring Figure 8), calculated as the difference in normalized certainty equivalents for

the lottery pairs at p = 0.9 and at p = 0.1, at p = 0.8 and at p = 0.2, and at p = 0.7

and at p = 0.3, for Gains (left panel) and Losses (right panel) from previous studies.9 In

both cases, perfect likelihood sensitivity would predict a difference of 1, but estimates

of sensitivities based on choice lists are universally lower than this. By comparison, in

binary choice estimates sensitivities are substantially higher, with a significant number
9Let π(p) be the normalized certainty equivalent,i.e. c/x. The index is then calculated as π(ph)−π(pl)

ph−pl
,

where ph and pl stand for the high and low probability, and are always chosen to be symmetric around
0.5.

15



of studies showing the reversed pattern of over-sensitivity to probabilities. The differ-

ence in likelihood-sensitivity across choice lists and binary choice is highly statistically

significant based on Wilcoxon tests (p < 0.001). Thus, the prior literature suggests that

not only the fourfold pattern but also the subtler phenomenon of likelihood insensitivity

is much weaker in binary choice than in choice lists.

binary choice choice lists
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Figure 5: Empirical cumulative distribution function of likelihood-sensitivity
Empirical cumulative distribution function of the likelihood-sensitivity index, calculated as the average of
the differences in normalized CEs for the pairs (X, 0.9) and (X, 0.1), (X, 0.8) and (X, 0.2), and (X, 0.7) and
(X, 0.3). Normalization occurs by the division of the true probability difference, which means that subjects
who are perfectly sensitive to probabilities (the EUT case) will have an index of 1. Panel A presents
scatter plots of observations for the gain wager X = 100, derived from studies employing either certainty
equivalents or binary choice methods. Panel B displays observations for the loss wager X = −100. Vertical
solid lines indicate the point of risk neutrality.

Discussion. Our meta-analysis paints a clear picture. Choice list designs have consis-

tently produced a fourfold pattern of risk attitudes, just as predicted by prospect theory.

Binary choice tasks, on the other hand, have produced a consistent twofold pattern of

risk-taking over the same probability range. This indeed suggests fundamental issues

affecting the predictive ability of PT when moving across different presentation modes

of choices between lotteries. One potential shortcoming of the evidence presented so far,

however, is that it is not causal: the evidence we have presented does not rely on subjects

being randomized into different conditions. Optimization of choice architectures for the

recovery of PT parameters may furthermore mean that the choices faced by subjects

in choice list tasks and in binary choice tasks may not be truly identical. To test the

robustness of our meta-analytic results to both these potential criticisms, we thus next

move to a randomized experiment.
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3 Experiment

To probe the causal effect of presenting choices one-by-one in a binary choice setting

versus collecting them into choice lists we run an experiment. We thus study subjects’

behavior in a collection of two-outcome lotteries that pay some high amount x with

probability p, and some lower amount y < x otherwise, traded off against sure amounts

of money that range from the low lottery outcome y to the high outcome x in steps of £1.

The only difference between treatment is thus whether choices are presented one-by-one

in a binary choice paradigm, or whether they are collected into choice lists.

(a) Equivalence Condition

(b) Choice Condition

Figure 6: Screenshots of the two treatments
Screenshots from the Gain treatments. Panel (a) shows a screenshot of a typical Equivalence list for a lottery
yielding £8 with a 20% probability, or else 0. Panel (b) shows one binary choice extracted from that same list as
it was presented in the Choice treatment.

Equivalence tasks: A very common method for directly eliciting certainty equivalents

for lotteries is via choice lists. Choice lists are (effectively) a series of binary choices

“stacked” on top of one another; Figure 6 shows an example (a screenshot from our

experiment). On the left is a description of the lottery, and on the right is an ascending

sequence of certain monetary payments. The subject makes a choice in each “row”.
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By examining at what sure payment amount the subject switches from preferring the

lottery to the sure payment, the researcher obtains an interval estimate of the subject’s

certainty equivalent (monetary value) for the lottery. Each subject in our experiment is

assigned 21 choice lists, allowing us to assess the fourfold pattern of risk attitudes and

some related diagnostic questions (see below).

Choice tasks: In our binary choice tasks (shown in the bottom panel of Figure 6),

subjects observe a lottery and a single sure amount, and simply choose the one they

prefer. Our binary choice tasks always consisted of a choice between a lottery and a sure

payment, as in the example at the bottom of Figure 6. Each subject is assigned 274

binary choice tasks.

Comparability: The key to our design is that we selected our choice tasks to include

all of the individual choices embedded in each of the 21 MPLs of our Equivalence tasks.

That is, we simply took the individual rows of each choice list, transformed each into a

stand-alone binary choice task (between the lottery and one of the sure amounts in each

case), and assigned them all to subjects. Subjects were assigned these Choice tasks in an

order that randomly mixed both the lottery and the certain payments. However, from

a payoff perspective, subjects make identical decisions under an identical payoff scheme

in our choice list and binary choice treatments. Under virtually any theory of utility

maximization (including prospect theory) they should therefore yield identical patterns

of behavior.

Choice stimuli: The primary goal of the experiment is to contrast evidence of the four-

fold pattern of risk-taking under binary choice and choice lists. To measure the pattern,

we vary the probability p, the outcomes payoffs x and y, and the gain/loss framing in an

orthogonal fashion. We do this using a design with both between- and within-subjects

variation. Within-subject, for every subject we vary p between 0.1 and 0.9, and we in-

torduce variation in both x and y. Between-subject we run a Gain treatment in which

x, y ≥ 0 and a Loss treatment in which x, y ≤ 0. Parameters are provided for both treat-

ments in Online Appendix Tables A.1 and A.2. Our Gain treatments are incentivized

while we followed much of the literature (Wakker and Deneffe, 1996; Abdellaoui, 2000)

by using hypothetical incentives in our Loss treatment – in order to avoid common con-

cerns in the literature that integration of payoffs with the initial endowments required

to incentivize losses might create distortions in measurement that would confound our
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inferences (a practice explicitly recommended by Etchart-Vincent and L’Haridon, 2011).

Results from our meta-analysis suggest that expressions of the fourfold pattern are not

different in hypothetical versus incentivized experiments in the literature. In a meta-

analysis examining all existing tests randomly allocating hypothetical choices versus real

incentives, Li and Vieider (2025) document an average (median, modal) effect size of

0. A partial exception are trials involving losses, where they discuss evidence strongly

suggesting that providing endowments triggers house money effects.

Understanding the Design: Relative to some related exercises from the literature,

our design has three characteristics that (to our knowledge) have not been combined and

that we believe allow for an especially crisp answer to our motivating questions:

• First, we designed the binary choice and choice list tasks to measure behavior over

identical choice primitives. Instead of giving subjects one binary choice task for

each lottery, we gave them a rich set, sufficient to infer preferences to the same

level of detail as in choice lists. This produces a particularly strong test of our null

hypothesis, and sets us apart from Harbaugh, Krause and Vesterlund (2010), who

presented only one single choice task per lottery (between the lottery itself and its

expected value).

• Second, our use of choice lists allows us to make our binary choice and choice

list tasks truly identical under standard theories. Subjects are literally making the

exact same set of choices in the two environments, making our test again especially

strong.

• Third, unlike recent papers that follow our basic design strategy (i.e., to contrast

choice lists with individual binary choices that reproduce the individual rows of

those lists; Lévy-Garboua et al., 2012; Freeman, Halevy and Kneeland, 2019; Free-

man and Mayraz, 2019), we study a large number of distinct choice lists within-

subject in our choice list tasks and a number of decomposed choice lists in our

binary choice tasks, while implementing an identical payoff mechanism. This

means we can, for the first time with such a design, really assess and contrast

the performance of prospect theory predictions at the subject level. By following

Brown and Healy (2018) and randomly selecting one choice to be paid (from a

series of binary choices presented in random order), we make our choice elicitation
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incentive-compatible.

These design elements give us an unusually interpretable answer to our main question

– and one that arguably works against our hypothesis by maximizing the chances of

finding similar behavior in choice lists and binary choice.

Implementation Details: all experiments included in this paper were conducted on-

line on Prolific UK within a short time span in the winter of 2022/23. Instructions

were provided in short videos, which provided a machine-generated voice-over to slides

illustrating the experimental tasks.10 The main experiment is a between-subjects 2x2

design crossing {choicelist, binarychoice} × {Gains, Losses}. In our Gains treatments

327 subjects signed up for the experiment, but we dropped 26 of them who failed to cor-

rectly answer some simple comprehension checks after watching the instructional video.

We thus ended up collecting valid responses from 301 individuals (choice lists: N=156;

binary choice: N=145). The median subject took 40 minutes to finish the experiment

(33 minutes in choice lists; 50 minutes in binary choice). Each subject was compensated

for their time according to Prolific regulations. In addition, each subject had a 1/10

chance to play one randomly selected choice for real money. In our Losses treatments,

excluding 10 subjects who did not pass some very basic comprehension tests, we were left

with 201 subjects providing valid responses (CE: N=98; BC: N=103). A typical subject

took 42 minutes to complete the experiment (31 minutes for the choice list treatment,

50 minutes for the binary choice treatment).

3.1 Results

Figure 7 plots the main results, focusing on low (lower than 0.3) and high (higher than

0.7) probability lotteries, where we expect the fourfold pattern to obtain. On the y-axis

we plot choice proportions of the risky option (the safe option for Losses), subtracted from

the true probability of winning. Given that in our design sure amounts vary in constant

steps of £1 between the low outcome y and high outcome x of the lottery (the smaller and

larger loss for Losses), such choice proportions directly map into normalized certainty

equivalents when choice are well-behaved (see below for alternative ways of analyzing
10The full video instructions are available at https://www.youtube.com/@RislabUgent. The slides

are included in Online Appendix D.
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Figure 7: Nonparametric risk-taking measures evaluating the fourfold pattern by treatment.
The figure plots net certainty equivalents, defined as ŝ−x

y−x
− p , where ŝ is the proportion of lottery choices for

Gains, and the proportion of safe choices for Losses. The left-hand figure plots these measures for choice lists,
and the right-hand figure for binary choices.

the data).11 This allows us to directly compare the choice proportions to the risk neutral

benchmark (in this case simply p). By further subtracting the true probability p from the

choice proportions, we can directly access risk-taking by whether the resulting quantity is

positive (indicating risk-seeking) or negative (indicating risk-aversion). Green upward-

pointing triangles plot results from Gain tasks and red downward-pointing triangles

results from Loss tasks.

The left hand panel plots results from our choice list treatment. The results nearly

perfectly (94% of the time) reflect the fourfold pattern. Except for one Loss choice

list, subjects’ certainty equivalents suggest subjects tend towards risk aversion for low

probability losses (red downward arrows on the left side of the plot tend to be nega-

tive) but become risk seeking for high probability losses (on the right side they become

positive). These patterns each flip for the Gains tasks (green upward arrows): at low

probabilities (left side) subjects tend to be risk seeking (have positive net certainty equiv-

alents) but at high probabilities (right side) are risk averse (have negative net certainty
11By ‘normalized certainty equivalent’ we mean in general ŝ−y

x−y
, where ŝ indicates a ‘stochastic switch-

ing point’, or equivalently, the choice proportion of the risky option (since the sure amounts in our ‘lists’
are evenly distributed between the extremes of the lottery). By ‘well-behaved’ we mean that subjects
either switch only one time per list, or that — in the presence of multiple switching — switches are
concentrated around the point of indifference. None of these assumptions are necessary, as we show in
several alternative ways of analyzing the data reported below, but they make for a convenient way of
representing choice patterns in first approximation.
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equivalents).

The right hand panel plots data from the binary choice tasks which, recall, are exactly

the same set of payoff-relevant decisions. Here, the fourfold pattern disappears almost

entirely (in 94% of tasks), replaced by a twofold pattern. In particular, subjects in

the Loss treatment are always risk seeking at both low and high probabilities, whereas

subjects in Gain treatment are always risk averse. Online Appendix A.4 further shows

choice proportions for particular tradeoffs between lotteries and sure amounts falling

close to expected value, and shows that the results reported here are robust to this

alternative way of representing the data.

Thus, raw analysis of our data suggests that the fourfold pattern is a phenomenon of

choice lists but fails to appear in binary choice. In Section 3.2 below we revisit these

data structurally under the lens of PT and show (i) that there is nothing unusual about

our data in either case, in the sense that under both binary choice and choice lists

we estimate standard PT parameters from these data (e.g., we get standard inverse-S

shaped probability weighting) and (ii) that these PT parameter estimates themselves

imply exactly what our non-parametric results show directly: that the fourfold pattern

does not occur in binary choice as it does in choice lists.12

Likelihood insensitivity. We complement our primary analysis of the fourfold pattern

with a second, subtler prediction about risky choice made by PT: likelihood insensitiv-

ity. While the fourfold pattern describes PT’s main prediction about how risk postures

change with unmixed lottery characteristics, likelihood insensitivity describes how the

intensity of preferences for or against risk change as probabilities do. PT predicts that

subjects’ apparent risk preferences respond to increases in probabilities sluggishly, with

the intensity of preferences changing less quickly than probabilities themselves do. If a

utility function is estimated assuming expected utility theory, the degree of curvature of

that function will thus be dependent on the fixed probability used to estimate it (Her-

shey, Kunreuther and Schoemaker, 1982). Likelihood insensitivity is a necessary (but

not sufficient) condition for the fourfold pattern to occur: if subjects are risk seeking
12We also find quite typical variations in choice patterns as stakes increase. In particular, we find

evidence for increasing relative risk aversion (IRRA) in Gains in both choice lists and binary choice tasks,
although the level of risk aversion is more pronounced in binary choice. In Loss tasks, we replicate the
typical finding of constant relative risk aversion in choice lists (Fehr-Duda et al., 2011; Bouchouicha and
Vieider, 2017), but we again find IRRA in the size of the loss in binary choice. Online Appendix A.5
reports these findings in more detail.
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Figure 8: Measured likelihood sensitivity in Equivalence and Choice
Empirical cumulative distribution function of the likelihood-sensitivity index, calculated as the average of the
differences in normalized CEs for the pairs (±16, 0.9;±4) and (±16, 0.1;±4), (±16, 0.8; 0) and (±16, 0.2; 0),
and (±16, 0.7; 0) and (±16, 0.3; 0). Figure A.4 presents the complete dataset, showing essentially the same
pattern. Panel A presents scatter plots of observations for gains. Panel B displays observations for the
losses. Vertical solid lines indicate the point of risk neutrality.

for small probability gains (risk averse for small probability losses), their insensitivity to

probabilities ensures that this preference ‘flips’ as probabilities get larger.

To gather a transparent, non-parametric measure of likelihood sensitivity, we calculate

the change in the rate at which subjects select the risky lottery at probabilities “mir-

rored” around 0.5, e.g., 0.9 and 0.1, 0.8 and 0.2 etc. We then normalize these individual

differences by the true difference in probabilities to put them on a common scale, and

average them to get a subject-wise index of likelihood sensitivity. A subject who weights

probabilities linearly (as in, e.g., expected utility theory) will have an index of 1. Sub-

jects with indexes below 1 are likelihood-insensitive, so that their relative risk aversion

increases in probabilities for gains (decreases in probabilities for losses), and above 1

likelihood-oversensitive (relative risk aversion decreasing in probabilities for gains, and

increasing in probabilities for losses).

Figure 8 plots empirical CDFs of this index from the choice list and binary choice condi-

tions, including separate plots for gains (left panel) and losses (right panel). In Gains, we

find that subjects in both treatments tend to be likelihood insensitive, but that subjects’

behavior is far closer to the expected utility theory benchmark in binary choice than

in choice lists. Indeed, sensitivities in binary choice first order stochastically dominate
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sensitivities in choice lists, and subjects in binary choice are over twice as likely to be

likelihood oversensitive as subjects in choice lists. This same pattern intensifies further

in losses where binary choice sensitivities strongly first order stochastically dominate

choice list sensitivities. The median subject in binary choice is in fact slightly likelihood

oversensitive, in sharp contrast with the standard PT account. In both cases, Wilcoxon

tests suggest (p < 0.001) that subjects are significantly more sensitive to likelihoods in

binary choice than in choice lists.

Once again, then, we find that a core descriptive element of prospect theory is robust in

choice lists but weakens (in gains) or disappears altogether (in losses) in binary choice.

As with the fourfold pattern, the likelihood insensitivity predicted by prospect theory

is a substantially better description of how subjects fill in choice lists than how they

directly choose between them.

3.1.1 Internal Consistency of Behavior

Given the claims of the literature, it is natural to wonder whether these results are a

consequence of lower data quality in binary choice relative to choice lists. After all,

choice list tasks visually organize the same underlying tasks studied in binary choice,

grouping these tasks by lottery and monotonically by certain payment. Perhaps this

leads to more internally coherent behavior when choice lists are used that better reflects

true risk preferences (à la fourfold pattern) than binary choice data do.

On net, this is a difficult interpretation to support. First, individual subjects in binary

choice tasks reveal choice proportions that suggest more consistent risk postures across

different lotteries than subjects do in choice list tasks. In Figure 9 we plot the rate

at which subjects decrease their choices of the lottery as its probability of paying out

increases, a clear rationality violation, for choice lists and binary choice. Clearly, subjects

in binary choice are less likely to exhibit such inconsistent behavior than subjects in

choice lists. By this measure, subjects in the binary choice treatment are thus clearly

less noisy than subjects in the choice list treatment.

Second, in addition to making choices that suggest more stable risk postures across lot-

teries, subjects in binary choice also make individual decisions that are more consistent

with one another when facing the same lottery twice, revealing higher test-retest reli-
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Figure 9: Between-lottery inconsistencies in Equivalence vs Choice
Panels A and B examine consistency violations in levels of risk aversion (risk-taking choices) between ‘lists’ as
the probability increases for identical outcomes. These plots report the relative violation frequency, which is the
violation frequency divided by the number of all possible violations.

ability in choice proportions (a common measure of the noisiness of behavior). In the

experiment, we assigned subjects two entire ‘choice lists’, (8, 0.8; 0) and (16, 0.8; 0) for

gains and (−8, 0.8; 0) and (−16, 0.8; 0) for losses twice (at different points in the exper-

iment) and calculated the proportion of the time the riskier option was selected. The

test-retest reliability for choice lists on this metric is 0.69, with a 95% confidence in-

terval of [0.598 , 0.831], a typical rate for choice list experiments. By comparison, the

data points obtained using binary choice tasks have a much higher test-retest reliability

of 0.915 with a 95% confidence interval of [0.883 , 0.938]. Similar observations hold for

losses.13 Thus despite the fact that subjects face individual choices in a random order in

binary choice, they express substantially more stable preferences for risk than subjects

do in the seemingly more orderly choice list tasks.

Subjects are therefore more consistent in repetitions of the same lottery in binary choice

than in choice lists. Subjects also show more consistent behavior across lotteries in

binary choice, being more likely to increase their risk taking as the expected value of

the lottery increases. The one sense in which subjects are plausibly less consistent is in

their rate of “multiple switching” — i.e., in the rate at which subjects choose the risky
13The test-retest reliability for Equivalences in losses is 0.528, with a confidence interval of

[0.368 , 0.657]. Once again, test-retest reliability is much larger for binary choice at 0.854, with a
confidence interval of [0.791 , 0.899].
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option at a higher sure payment while also having chosen the sure option at a lower

payment. In particular, in binary choice subjects are more likely to switch multiple

times “within list” than they are in choice lists. However, in Appendix A.7 we show that

these errors are far from random errors, and instead strongly peak near expected value

in a region matching subjects’ own risk postures. This orderliness and the fact that they

occur at points likely near subjects’ own certainty equivalents is strongly consistent with

documentation of noisiness occurring in “regions of indifference” by Cubitt, Navarro-

Martinez and Starmer (2015) and Agranov and Ortoleva (2017). These inconsistencies

therefore (unlike instabilities in risk postures and noise in individual choices discussed

above) seem at odds with confusion-driven random error and instead resemble standard

psychometric trembles widely documented for (near-) indifferent subjects.

Summarizing, the data we report seem inconsistent with an explanation for our results

rooted in lower data quality in binary choice relative to choice list tasks. At best, the

evidence is mixed. But if anything the results seem more consistent with the opposite

interpretation. This interpretation is indeed also supported by our structural estimations

of prospect theory functionals, reported in section 2.1, which estimate much higher noise

variance for choice lists compared to binary choice, suggesting again that behavior in the

binary choice treatment is overall more consistent than behavior in choice lists in our

data. Such errors are rarely reported and even less often discussed in the PT literature,

since they have little to do with the inner workings of the model. Examining errors,

however, allows us to ‘aggregate’ the different types of errors that can occur in Choice

and Equivalence. Starting with Gains, the standard deviation of the residuals is 0.120

(SE 0.003) in choice lists, but much smaller at 0.037 (SE 0.001) in binary choice. The

same holds for Losses, where we find errors of 0.127 (SE 0.004) for choice lists and 0.072

(SE 0.002) in binary choice. Binary choice thus induces lower errors than choice lists in

our data.

A natural interpretation of these results is that they show that subjects express highly

internally consistent preferences towards lotteries in binary choice but tremble near in-

difference (as documented in the vast literature on psychometrics in psychology). By

contrast, choice list tasks induce an artificial internal consistency within-list, causing

them to therefore express artificial certainty equivalents that are highly unstable be-

cause of their more distant relationship to true preferences. If this interpretation is
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correct, it is the fourfold pattern (rather than the twofold pattern) that is an artifact of

elicitation-driven errors in our data.

3.1.2 Endogenous reference points?

These results suggest that the key behavioral predictions of PT fail (the fourfold pat-

tern) or are seriously weakened (likelihood insensitivity) in binary choice. This is a

fundamental predictive failure of the theory even if PT functionals were able to ex post

rationalize the difference between binary choice and choice lists. However, in Online

Appendix A.3 we show that the machinery of prospect theory fails also at ex post ra-

tionalization. There, we rule out perhaps the most salient way PT might be used to

“explain” the surprising difference between choice lists and binary choice in our data:

endogenous reference points. If reference points are fixed at 0 in choice list tasks like

ours (as is often claimed in the literature, e.g., Hershey and Schoemaker, 1985) but vary

across binary choice tasks, this will produce scope for the expression of loss aversion

in the latter, driving a wedge between the binary choice and choice lists environments.

However in the Appendix we show that this wedge is incapable of fitting our data — no

single loss aversion parameter, λ, can organize the data and therefore ex post rationalize

the differences we observe across the treatments. Thus, not only do PT’s core empirical

predictions fail, the highly flexible functionals of PT also cannot ex post rationalize the

fundamental changes in behavior we observe in binary choice.

3.2 Why did this go largely unnoticed?

The results of our meta-analysis, backed up by our own experimental data, paint a clear

picture: the fourfold pattern was always a phenomenon of choice lists, not a phenomenon

of binary choices between lotteries. Given the centrality of the pattern to PT, why has

the literature mostly failed to notice its absence from the very setting PT was meant

to explain? We think the answer is ultimately rooted in the fact that most of the

literature on PT is focused not on non-parametric assessment of risk postures such as we

proposed above, but instead on estimates of PT parameters. This is especially true of

binary choice tasks in which it is somewhat more difficult to non-parametrically assess

risk postures than in choice lists (where risk postures are readily available by comparing

elicited certainty equivalents to expected values), leading data to often be summarized
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via structural estimates.

Reliance on structural estimates, it turns out, makes it easy to miss failures of the four-

fold pattern to appear, because such estimates invite the researcher to heuristically read

parametric evidence of standard inverse-S shaped probability weighting as approximate

evidence of the fourfold pattern. But this heuristic can badly fail because the probability

weighting function is only one of the two elements of PT that contribute to risk attitudes.

Sufficient curvature of the utility function (the second element of PT, alongside the prob-

ability weighting function) can lead even a very standard inverse S-shaped probability

weighting function to coincide with risk attitudes that are starkly inconsistent with the

fourfold pattern.14 Indeed, our meta-analysis suggests that in past binary choice ex-

periments this has typically been the case: while 76.1% of the results from prior binary

choice studies estimate inverse-S shaped probability weighting functions as described by

PT, only 15.2% produce certainty equivalents consistent with the fourfold pattern (none

of which are significantly different from risk-neutrality)!

Structural estimation of PT parameters. We can illustrate the problem by struc-

turally estimating PT parameters on our own data using the most standard parame-

terization: (i) a standard power-utility value function and (ii) a 1-parameter weighting

function (though in Online Appendix B.4 we show similar findings for more flexible speci-

fications). Focusing on Gains, we estimate a likelihood-sensitivity of 0.560 (SE 0.007) for

our choice list task, yielding a standard inverse S-shaped probability weighting function

as pictured in the left hand panel of Figure 10. In binary choice we estimate a sensitivity

of 0.705 (SE 0.009) indicating substantially less insensitive behavior that comes much

closer to EU benchmarks (matching our non-parametric findings in Section 3). Nonethe-

less, as the right hand panel of Figure 10 shows, in binary choice we continue to find the

expected inverse S-shaped weighting function. Were we to focus primarily on these esti-

mates when assessing the fourfold pattern we would be lead to believe that the pattern

arises in binary choice just as it does in choice lists. However, as we’ve seen from our

analysis of the raw data drawing this conclusion would be a significant mistake.
14The probability weighting function can be first concave and then convex and thus inverse-S shaped,

but stay entirely below the 45 degree line. Even a probability weighting function that crosses the 45
degree line and shows overweighting of small probabilities may actually occur in the presence of risk
aversion for small probability gains (risk seeking for small probability losses) if utility is sufficiently
concave (convex for losses).
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Figure 10: Probability weighting and risk taking
Panel A shows the parametric Prelec 1-parameter function estimated on our choice lists data, with a likelihood-
sensitivity parameter of 0.560 (SE 0.007) (estimates using a Tversky-Kahneman function are similar). The blue
points indicate CEs calculated based on our estimated functionals. Given that utility is estimated to be close to
linear (with a power utility parameter of 0.934, SE=0.007), implied CEs closely track the probability weighting
function. Panel B shows the probability weighting function obtained from our Choice data, with a likelihood-
sensitivity parameter of 0.705 (SE=0.009). The function is thus inverse-S shaped, just like for choice lists. The
implied CEs, however, paint a very different picture, due to the power utility parameter that now indicates much
more risk aversion (0.556, SE=0.005).

To see this, alongside the parametric estimates in each panel we also plot (in blue) cer-

tainty equivalents, calculated from the equation ĉ = u−1 [w(p)u(x)], where w(p) indicates

the probability weighting function, u(x) the utility function, and u−1 indicates the in-

verse of the utility function. Unlike probability weights, these certainty equivalents take

utility curvature into account and so can be directly compared to the expected value

(EV ) of the wager, indicating risk aversion if ĉ ≤ EV , and risk seeking if ĉ ≥ EV

(or equivalently, if ĉ/x ≤ p and ĉ/x ≥ p, respectively). While these line up nicely with

probability weighting estimates in choice lists, they imply fundamentally different risk

postures in binary choice. Instead of showing the characteristic “flip” in apparent risk

preferences at low vs. high probabilities implied by the parametric estimates, behavioral

data in binary choice indicate that subjects are globally risk averse. The reason for this

disconnect is that these identical estimation exercises yield almost no utility curvature

for subjects in choice lists but substantial utility curvature in Choice. While power util-

ity estimates for choice lists in our structural estimations are nearly linear (risk neutral)

in choice lists with ρ =0.934 (SE 0.007), utility is extremely concave in binary choice

with an estimate of ρ =0.556 (SE 0.005).15 To contextualize these results in terms of
15Similar findings also obtain for losses, where choice lists produces sensitivity 0.828 (SE 0.014) and

utility 0.906 (SE 0.010), whereas binary choice results in sensitivity 1.053 (SE 0.015) and utility curvature
ρ =0.758 (SE 0.008). It has often been remarked in the literature that curvature in losses is less
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the literature, in Figures 1-4 we plot certainty equivalents inferred from our structural

estimates alongside similarly computed estimates in our meta-analysis, and we recover

exactly the same pattern our non-parametric analysis suggests: a fourfold pattern in

choice lists and twofold pattern in binary choice.
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Figure 11: Probability weighting and risk taking
Panel A shows the parametric Tversky-Kahneman function estimated by Wu and Gonzalez (1996), with a cur-
vature parameter γ = 0.71. The blue points indicate CEs calculated based on their estimated functions. While
the parametric function shows overweighting of small probabilities, risk attitudes indicate risk aversion for small
probability gains. The discrepancy is explained by their power utility coefficient, which at ρ = 0.5 indicates
substantial risk aversion. Panel B shows the parametric probability weighting function estimated by Tversky
and Kahneman (1992) from certainty equivalents. In this case, the overweighting of small probabilities of a gain
indeed translates into risk seeking. The much smaller gap between the two functions can be traced back to utility
curvature, which is much less pronounced at ρ = 0.88.

Similar patterns and opportunities for confusion have arisen throughout the literature’s

history, stretching back to the earliest efforts to estimate PT functionals. To illustrate,

consider two of the landmark studies in the early literature: Tversky and Kahneman

(1992) (a choice list study) and Wu and Gonzalez (1996) (a binary choice study). As

Figure 11 shows, estimated likelihood sensitivity is nearly identical in the two datasets,

producing virtually identical inverse S-shaped probability weighting functions. However,

as in our data, estimates suggest very little utility curvature in the Tversky and Kahne-

man (1992) choice lists study (a power estimate of ρ = 0.88) but pronounced curvature

in the Wu and Gonzalez (1996) binary choice study (ρ = 0.5). When we calculate cer-

tainty equivalents from these estimates as we did with our own data (plotted in blue in

Figure 11), we find strikingly similar evidence to ours. Probability weighting estimates

are a good approximation of certainty equivalents in the Tversky and Kahneman (1992)

pronounced than in gains (Abdellaoui, 2000; L’Haridon and Vieider, 2019), so that the failure to find
insensitivity in the loss domain is hardly remarkable.
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choice lists study and therefore of risk attitudes. But, the heuristic value of probability

weighting for assessing risk attitudes falls apart in binary choice: as in our data, there

is a significant gulf between probability weights and certainty equivalents in the Wu and

Gonzalez (1996) binary choice study, where certainty equivalents are starkly inconsistent

with the fourfold pattern.

Discussion. The striking similarity of Figures 10 and 11 strongly reinforces our main

observation in this section: in an important sense our experimental findings are not new,

but instead have been with us since the beginning. However, they have gone largely

unnoticed probably because of the literature’s intensive focus on structural parameters

rather than their implications for risk attitudes. This is perhaps understandable be-

cause, as we’ve discussed, the distinctive character of the fourfold pattern is ultimately

attributable to probability weighting so that it is perhaps natural to treat evidence of

the latter as implicit evidence of the former. In order to identify the shortcomings of

this heuristic inference, the literature would have had to calculate certainty equivalents

by joining evidence from the probability weighting function with evidence from the util-

ity function as we have above. The literature has rarely done this and so has missed

the regularity we document. For instance Wu and Gonzalez (1996) emphasize the im-

portance of the fourfold pattern as one of the “critical empirical regularities that any

good descriptive model should accommodate [...]: risk aversion for most gains and low

probability losses, and risk seeking for most losses and low probability gains” (p. 1676)

but do not seem to have examined whether their estimates imply the pattern. If they

had, they would have noticed that prospect theory fails this test for a good descriptive

model!16

Ultimately, the literature’s failure to notice the collapse of the fourfold pattern in binary

choice is downstream of a larger point the literature has under-emphasized: the fact that

binary choice and choice list behaviors tend to differ significantly, even in parametric

estimates of PT parameters. First, even when estimated probability weighting param-

eters are similar, estimated utility curvature tends to be substantially more severe in

binary choice than in choice lists. Indeed, in our meta-analysis we find that power utility
16The failure to detect the absence the fourfold pattern is particularly understandable in the case of

binary choice because (unlike with choice lists), certainty equivalents are difficult to directly infer non-
parametrically from choice data and often have to be inferred indirectly based on certainty equivalents
calculated from parameters. This is doubly true in Wu and Gonzalez (1996) who use a ladder design in
which it is especially difficult to infer certainty equivalents based on raw choice patterns.
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parameters are far higher in choice lists tasks (mean = 0.86, median = 0.97) than in

binary choice tasks (mean = 0.64, median = 0.64) for gains, with similar divergences

in losses.17 Second, likelihood insensitivity – the core driver of probability weighting’s

distinctive shape — tends to be much less pronounced in binary choice than choice lists

in the prior data. Both of these patterns were probably under-noticed because very few

studies actually conduct head-to-head comparisons of the two settings as we do in our

experiment.

4 Cognitive Frictions and the Equivalence-binary choice Gap

The focus of our paper has been PT’s failure to predict binary choice behavior. But its

more fundamental failure is its inability to explain the significant differences between risk

attitudes in binary choice and choice lists — a failure that arises both in our experiment

and in the prior literature. These differences can be summed up as follows:

1. Likelihood insensitivity, the core characteristic of the probability weighting function,

tends to be far less severe in binary choice than Equivalence.

2. Utility curvature, the core characteristic of the utility function tends to be far more

severe in binary choice than Equivalence.18

3. Although less often measured, in datasets like ours, certainty equivalents tend to

be noisier in Equivalence than binary choice.

A failure to explain these differences is hardly unique to prospect theory — no standard

preference-based theories of risk-taking can account for patterns like these. This is

because standard theories of risk preferences (PT included) root risk postures entirely

in the payoffs and probabilities underlying the lotteries being evaluated, which do not

vary between the two choice environments. This is cast in particularly sharp relief in our

experiment (Section 2), which was designed to feature identical menus, information and
17In losses, power utility parameters are higher in choice lists tasks (mean = 1.02, median = 1.09)

than in binary choice tasks (mean = 0.75, median = 0.73). Note, indeed, the smaller values indicate
increased convexity for losses, and are thus an indication of risk seeking.

18Curvature is the core characteristic of the utility function when assessing unmixed lotteries, as
we do in our paper. For mixed lotteries, the reference point and parameter of loss aversion are equally
important. The evidence for loss aversion is currently also under review, with recent studies documenting
stake-dependence of loss attitudes (Ert and Erev, 2013), increasing evidence that the parameter may be
close to 1, or even fall below 1 (Chapman et al., 2024), and challenges to the explanatory power of the
concept of loss aversion (Chapman et al., 2023b).
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incentives in the two settings. Under the lens of preference-based theories, these tasks

are identical.

Noisy coding. If preference-based theories cannot explain these regularities, what can?

We consider the possibility that the widespread gulf we’ve documented between binary

choice and choice lists is an outgrowth of the way cognitive frictions differentially distort

behavior in the two settings. Our starting point is a groundswell of recent evidence

suggesting that probability weighting itself represents, not an expression of preferences,

but instead a severe cognitive distortion in the evaluation of lotteries. In particular,

a class of recent noisy coding models has proved remarkably successful in organizing

and predicting distinctive anomalies surrounding probability weighting (Khaw, Li and

Woodford, 2021; 2023; Vieider, 2024; Frydman and Jin, 2023; Enke and Graeber, 2023;

Oprea, 2024b; Oprea and Vieider, 2024). These models are rooted in the idea that (i)

cognitive limitations cause decision makers to perceive or represent the descriptive prim-

itives of lotteries (e.g., probabilities, payoffs) with noise and (ii) have prior beliefs about

what these lottery primitives are. The key idea of noisy coding is that decision makers

minimize the negative effects of their noisy perception by combining those perceptions

with their prior belief in a standard, Bayesian manner. As a result, imperfections in the

perception or representation of lottery primitives produce not just noise but systematic

biases. In particular:

1. Bayesian shrinkage will produce likelihood insensitivity, systematically distorting

the mapping between probabilities and values in a manner that exactly matches

the standard inverse S-shape of standard probability weighting. The noisier per-

ceptions are, the stronger the likelihood insensitivity.

2. Prior beliefs about the log-odds of the lottery paying an extreme amount will

systematically distort the apparent risk attitudes of decision makers, producing

apparent curvature in estimates of utility functions. Such apparent risk aversion

can further be distorted by noise, with noise resulting in an uplift of the prior and

hence an apparent increase in risk taking (for gains) or risk aversion (for losses).

3. Noisiness in decision-makers’ perceptions will generate noise in their decisions —

the noisier perceptions are, the noisier choices will be (at least over some, empiri-

cally plausible, ranges).
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Given these three implications (and their correspondence to the three differences between

binary choice and choice lists listed above), to whatever degree binary choice and choice

lists (i) generate different levels of noise in the perception of lottery primitives and (ii)

distort prior beliefs about payoff distributions, we should expect likelihood sensitivity,

utility curvature and behavioral noise to also differ across the two settings.

Procedural Differences Between Binary Choice and Choice Lists. Noisy cogni-

tion models, like most cognitive models (and unlike standard models of risk preferences

like EU and PT) make predictions that depend on the procedure the decision-maker uses

to make decisions. In particular the way cognitive acts are sequenced and arranged by

the DM to make decisions will have substantial impacts on the formation of beliefs and

the way cognitive noise evolves. This is important because there are strong reasons to

think that the way decision makers are primed to process information is procedurally

different in Equivalence than in binary choice.

Intuitively, in binary choice the most obvious procedure for choosing between a lottery

and a sure payment is for the DM to separately and independently evaluate the relative

worth of each, and then choosing whichever seems more valuable. By contrast, when

valuing a lottery (i.e., in choice lists), the decision maker first must assess the value

of the lottery and only after doing so search over many possible sure payments for one

that is equivalent to that lottery value. These two choice procedures are equivalent for

decision-makers who suffer no cognitive frictions, but not for decision makers who suffer

from the kinds of frictions described in noisy coding models.

In particular, in binary choice, noise in the independent imprecise evaluations DMs

make of lotteries and rewards will tend to cancel one another out when the two are

compared to make a choice, limiting (or even eliminating) the effects of cognitive noise

and sharply attenuating the three implications of noisy coding sketched above. The result

will be weak likelihood dependence, high risk aversion (high apparent utility curvature

in estimation) and relatively low-noise decisions. By contrast, the sequential procedure

of first evaluating the lottery and then iteratively searching for an equivalent value, as

required in choice lists, will tend to produce the opposite. Evaluating potential outcomes

by comparison to the initially valued lottery will introduce an additional Bayesian bias

to the later evaluation of outcomes that will intensify rather than attenuate cognitive

noise. Following the three implications of noisy coding models discussed above, this will
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produce strong likelihood dependence, low apparent risk aversion and relatively noisy

decisions. Thus, noisy coding, when applied to the different procedures induced by

Equivalence and binary choice, produce exactly the three differences between the two we

summarized at the beginning of this section.

The technical arguments underlying these implications are subtle and require significant

notation, so we defer them to Online Appendix C. There we offer a noisy coding model

based on Vieider (2024), which uses technical assumptions suggested by recent neuro-

science. However, the implications we draw (as sketched above) do not depend on the

idiosyncrasies of our model, but rather seem to be general implications of noisy cod-

ing applied to binary choice-like and choice list-like evaluation procedures. For instance

Khaw, Li and Woodford (2023), in contemporaneous work, draw similar conclusions

about valuation tasks using a noisy coding setup building on the somewhat different

modeling choices used in Khaw, Li and Woodford (2021).

Implications. The most important implication of this is that coding models like ours

predict the three key distinctions between choice lists and binary choice that we have

documented in our experiment and in the prior literature, and therefore ultimately ex-

plain why the fourfold pattern appears in choice lists but not in binary choice. Such

models predict that the reason the fourfold pattern does not appear in binary choice

is ultimately that the pattern itself is a consequence of cognitive errors that are inten-

sified in choice lists relative to binary choice. In particular, the fourfold pattern is a

consequence of the fact that noisy evaluation in choice lists produces both intense like-

lihood insensitivity and artificial apparent risk neutrality (with the corollary of highly

inconsistent behavior between tasks), the combination of which are necessary for the

fourfold pattern to arise. Thus, in addition to explaining the behavioral gap between

binary choice and choice lists, noisy coding offers an interpretation of the key patterns

of prospect theory as growing not out of risk preferences, but of cognitive errors.

Of course, the measure of an explanation like ours is its excess explanatory power — its

ability to explain further phenomena that it wasn’t designed to account for. One crucial

implication of our explanation is that the difference between choice lists and binary choice

actually isn’t caused by the list format or the orderliness of typical choice list tasks etc.,

but instead to something subtle in the decision-making procedure choice list tasks tends

to induce. In particular, it is the fact that choice lists require information to be processed
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sequentially that our model suggests generates the difference in behavior. To value a

lottery, the DM must first form an assessment of the lottery and then subsequently

assess certain payments to find one that equalizes with this value. Simply put, this is a

more difficult and noisier process than direct binary choice.19

This suggests a distinctive test for our explanation of the gap between binary choice and

choice lists. If, as our model suggests, it is the order of evaluation of information that

generates the gap, we should be able to cause binary choice behavior to converge towards

choice list behavior simply by forcing subjects to evaluate binary choice problems in a

way similar to choice lists. In particular, if we induce subjects to evaluate a lottery up

front and inform the subjects that they will be asked to subsequently contrast this with

certain payments in a series of binary choices, then our explanation suggests that we

should see some degree of convergence in likelihood dependence, utility curvature and

noise and the emergence of distinctive features of the fourfold pattern. We report just

such a test next.

4.1 An Experimental Test

To test the hypothesis discussed at the end of the previous subsection, we conducted an

experiment on Prolific UK using a similar design to the experiment reported in Section 3,

but with a simpler set of lotteries.20 In the experiment we repeated our choice list versus

binary choice designs, and introduced a new treatment we call Sequential-binary choice.

Approximately 50 subjects participated in each condition, resulting in 150 participants

for the entire experiment.

In our novel Sequential-binary choice experiment, we attempt to induce subjects to

reason about binary choice in a choice list-like, sequential way. For each probability,

subjects are first shown the lottery and asked to evaluate it. They are then given a series

of binary choices between the lottery they have just evaluated and certain payments in

a random order. Thus the only real differences relative to our binary choice treatment
19Notably, this explanation is highly consistent with the fact that the fourfold pattern does arise under

the BDM mechanism used to elicit valuations, an alternative mechanism to choice lists for eliciting
certainty equivalents (see e.g. Chapman et al., 2023a, for evidence of very high correlations between
valuations elicited in choice lists and valuations obtained from BDM mechanisms). This suggests that
the gap between binary choice and choice lists is driven not by details of the elicitation mechanism, but
instead by the cognitive act of valuation itself.

20In particular, subjects evaluated lotteries that paid £24 with probabilities of 0.1, 0.3, 0.5, 0.7, or
0.9, and £0 otherwise.
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is (i) binary choices are temporally grouped by lottery and (ii) subjects are asked to

consider the lottery prior to making those choices.

Results. Figure 12 shows the results. Panel A shows the choice proportions for each

treatment with the 45 degree line plotting the risk neutral benchmark: choice proportions

above (below) this line reveal evidence of apparent risk seeking (aversion). The choice

list and binary choice conditions replicate the main results from the Gains treatment

of the experiment in Section 3 above. In particular, subjects in choice lists are risk

seeking at low and risk averse at high probabilities, replicating the gains component of

the fourfold pattern. However in binary choice, we find uniform risk aversion, consistent

with the twofold pattern we’ve documented in our experiment and the prior literature.

What’s more, we see non-parametric evidence of the three key differences we opened

this section with and which our model predicts. Panel A shows that choice proportions

change much more gradually in choice lists than in binary choice (evidence of greater

likelihood insensitivity), and the lower risk choice at p = 0.5 in binary choice than in

choice lists is consistent with far greater utility curvature. In Panel B, we show that as

in earlier work, behavior is considerably more noisy in choice lists than in binary choice

(as measured by between-task inconsistencies in observed choice proportions).
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Figure 12: binary choice patterns in Equivalence, binary choice, and Sequential-binary choice.
Panel A plots certainty equivalents from each of the three treatments. The certainty equivalents are derived from
stochastic switching points or choice proportions for the risky options, as throughout the paper. Panel B plots
inconsistency in choice proportions across lotteries, defined as the choice proportion of the lottery declining as
its expected value increases (i.e., as the probability of winning increases, since all else is kept constant).

Our main finding, however, is that these gaps in behavior almost entirely disappear
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in our Sequential-binary choice treatment. Simply by forcing subjects to evaluate the

lottery intensively prior to making binary choices, we cause the fourfold pattern to re-

appear and indeed for choice proportions to become virtually identical to our choice

list treatment. We also find that choice inconsistency rises in this treatment relative to

binary choice, evidence for a distinctive claim of our model — that sequential evaluation

produces noisier cognition and behavior.

Figure 13 shows the results of structural estimations of PT parameters, based on the

same specification as in section 2.1 above (details about the estimation procedures can

be found in Online Appendix B). In choice lists, the estimated probability weighting

function and the inferred CEs track each other closely. Probability weighting indicates

considerable likelihood insensitivity (0.649, SE 0.028), but utility is close to linear with

a power parameter of 0.857 (SE 0.023). In binary choice, shown in Panel B, likelihood

insensitivity is again significantly less strong, but clearly present at 0.750 (SE 0.024).

However, the strong concavity of the utility function (power parameter 0.571, SE 0.012)

drives a wedge between the probability weighting function and the calculated CEs. This

replicates and confirms our previous results. By contrast, the results for Sequential-

binary choice, shown in panel C are very similar to choice lists, rather than binary

choice: likelihood insensitivity is very strong at 0.530 (se 0.019), whereas utility is close

to linear at 0.926 (se 0.017). These two facts together mean that the calculated CEs

once more closely track the probability weighting function — mirroring typical choice

list rather than binary choice behavior. Finally, the residual errors also line up with our

hypothesis: 0.139 (se 0.010) in choice lists, 0.033 (se 0.001) in binary choice, and 0.119

(se 0.007) in Sequential-binary choice. Thus we can make binary choice behavior nearly

as noisy as choice list behavior simply by inducing subjects to process information in a

choice list-like way.

Summarizing then, our experimental results provide strong evidence in favor of a highly

distinctive implication of our explanation. The highly likelihood-insensitive probability

weighting and near-linearity of utility that drives the fourfold pattern in choice lists are

not actually expressions of subjects’ risk preferences. Rather they are outgrowths of

the way decision makers procedurally approach the particularly difficult task of choice

lists, which requires a sequential mode of evaluation that tends to amplify perceptual

and evaluative biases. Simply inducing this style of evaluation in binary binary choice is
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Figure 13: binary choice patterns in CE, BC, and sequential evaluation
The figure shows probability weighting functions estimated in a PT model, jointly with certainty equivalents
calculated from the PT parameter estimates. Panel A shows the estimates for choice list tasks, panel B for binary
choice tasks, and panel C for Sequential-binary choice tasks.

sufficient to induce these artificialities and thereby cause binary binary choices to obey

the predictions of prospect theory.

5 Discussion

We show that the “most distinctive implication” of prospect theory (Tversky and Kah-

neman, 1992) does not actually arise in direct lottery choice (Choice tasks). Instead

the fourfold pattern of risk attitudes is an apparent artifact of explicit elicitations of

certainty equivalents (Equivalence tasks) that simply does not occur in direct choice.

We first show this in meta-analysis summarizing decades of previous findings, showing

that this has always been the case, but that it has largely been missed in the literature

(with the important exception of Harbaugh, Krause and Vesterlund, 2010). We then

used a novel experiment that was designed to maximize comparability between binary

Choice and overt Equivalence tasks, and showed that the phenomenon indeed occurs for

identical choice s and warrants a causal interpretation. Thus prospect theory fails its

most diagnostic test (at least according to the theory’s creators) in the very setting the

theory was ultimately designed to explain.

This fundamental predictive failure of prospect theory is downstream of a deeper de-

scriptive failure of the theory that we likewise identify with new experiments and show

by meta-analysis has always been latent in the literature. The estimated parameters

of prospect theory functionals are systematically different in Equivalence and Choice.

In particular, the sharp likelihood insensitivity at the heart of prospect theory shrinks
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substantially or disappears in Choice relative to Equivalence. Conversely, the near lin-

ear utility typically estimated in Equivalence is replaced by sharp curvature in Choice.

It is the combination of these two fundamental descriptive divergences that generate

the predictive failures of the fourfold pattern. Crucially, despite prospect theory’s multi-

parameter flexibility, it cannot account for these divergences.21 Indeed, in our experiment

Equivalence and Choice are identical from the perspective of the theory, yet nonetheless

produce radically different behaviors.22

Importantly, we argue that these predictive and descriptive failures are not special to

prospect theory, but are instead bound to arise in any attempt to rationalize classic

lottery anomalies on the basis of non-neoclassical preferences. In order to account for

the rift between the two types of decisions, we must instead understand the way cognitive

imperfections express differently in the two settings. We show that simple models that

account for the cognitive frictions that differentially arise in the acts of Equivalence

and Choice can account for the key divergences that perennially arise between the two

settings. Under the guidance of this model, we conduct another round of experiments

and show that we can cause Choice and Equivalence behaviors to converge simply by

artificially forcing these frictions to be similar. These results not only explain the gap,

but also establish that the anomalies inspiring prospect theory are themselves driven

not by novel preferences but rather by cognitive frictions that distort risky choice in

systematic ways.

The fourfold pattern is foundational to prospect theory both because it is the primary

expression of several of the theory’s key components (including, notably, probability

weighting and likelihood insensitivity), but also because it is responsible for some of the

theory’s most important empirical rationalizations, e.g., its ability to account for the co-
21For instance, as we show in Online Appendix A.3, invoking differences in reference points across the

two cases and attempting to explain the difference via loss aversion cannot “explain” the differences we
measure.

22Our data shows basic failures of prospect theory when interpreted both as a predictive and a de-
scriptive theory. A third interpretation of prospect theory is as a collection of decision-theoretic axioms
that themselves have testable implications. We do not test these axioms but instead the predictive and
descriptive implications the theory articulates for lottery Choice and Equivalence. One rather extreme
possible response to our findings is that, although we cast doubt on both the predictive and descriptive
adequacy of the theory, because our tests are not axiomatic we have in some deep sense not in fact falsi-
fied the theory. Of course important tests have already falsified prospect theory’s axioms in prior work,
some conducted prior to the theory’s creation (see e.g. Tversky, 1969, for violations of transitivity).
Nonetheless, to whatever degree we agree to define prospect theory merely as a body of true axioms
that make no falsifiable predictions for lottery Choice or Equivalence, we are happy to stipulate that
the theory is metaphysically alive and well.
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existence of gambling and insurance – a foundational issue in decision making under risk

(Vickrey, 1945; Friedman and Savage, 1948; Markowitz, 1952). While prospect theory’s

ability to explain such choices has been questioned before (Sydnor, 2010), our findings

strike at the very hard of this central mechanism of the model. We can of course not

exclude that a fourfold pattern may still occur for extremely small or large probabilities

(see e.g. Chark, Chew and Zhong, 2020; Ruggeri et al., 2020). However, this misses

the central point of our contribution: behavioral choice patterns differ systematically

for identical choice problems across the two context, which fundamentally challenges all

models of utility maximization.

Ultimately, our results thus point not merely to a failure of prospect theory, but more

generally a failure of any theory that attempts to explain lottery anomalies using de-

scriptions of preferences. Because of this, our paper adds to a growing body of evidence

suggesting that lottery choice is fundamentally shaped by human cognitive costs and

constraints and the often idiosyncratic ways humans adapt to these limitations when

making decisions. This in turn points to two primary implications of our work. First,

substantively, because cognitive frictions seem to be first order drivers of risky choice, it

is highly unlikely that we can infer much welfare-relevant information from risky choices.

They simply contain little information about true preferences and therefore are nor-

matively uninformative. Second, methodologically, it is likely that the most promising

approach for explaining and predicting risky choice is models rooted in the structure of

human cognition rather than in descriptions of novel preferences like those offered by

prospect theory.
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A Experiments: Additional results

A.1 Stimuli and results Experiment I

Table A.1 and Table A.2 present the choice proportions for the two treatment conditions

by task in both the gain and loss experiments, respectively. These tables provide non-
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Table A.1: binary choice proportions of risky option by treatment for CEs over gains

Task choice lists binary choice p-value Task choice lists binary choice p-value

(16, 0.2; 0) 0.27 0.11 <0.01 (17, 0.5; 4) 0.43 0.34 <0.01
(16, 0.3; 0) 0.32 0.13 <0.01 (24, 0.1; 0) 0.19 0.06 <0.01
(16, 0.5; 0) 0.44 0.27 <0.01 (24, 0.5; 0) 0.42 0.26 <0.01
(16, 0.7; 0) 0.55 0.46 <0.01 (24, 0.9; 0) 0.71 0.66 <0.01
(16, 0.8; 0) 0.62 0.56 <0.01 (24, 0.4; 12) 0.44 0.31 <0.01
(16, 0.8; 0) 0.62 0.57 <0.01 (24, 0.6; 12) 0.47 0.43 <0.01
(16, 0.1; 4) 0.20 0.11 <0.01 (8, 0.2; 0) 0.32 0.12 <0.01
(16, 0.5; 4) 0.43 0.33 <0.01 (8, 0.5; 0) 0.50 0.32 <0.01
(16, 0.9; 4) 0.70 0.68 0.15 (8, 0.8; 0) 0.67 0.57 <0.01
(15, 0.5; 4) 0.45 0.35 <0.01 (8, 0.8; 0) 0.69 0.59 <0.01
(16, 0.5; 5) 0.42 0.35 <0.01

List of choice tasks with choice proportions per treatment condition. The indicated p-values are based
on two-sided Wilcoxon rank sum tests for difference between treatments.

Table A.2: binary choice proportions of risky option by treatment for CEs over losses

Tasks choice lists binary choice p-value Tasks choice lists binary choice p-value

(-16, 0.2; 0) 0.23 0.14 <0.01 (-17, 0.5; -4) 0.43 0.36 <0.01
(-16, 0.3; 0) 0.32 0.20 <0.01 (-24, 0.1; 0) 0.13 0.08 <0.01
(-16, 0.5; 0) 0.49 0.41 <0.01 (-24, 0.5; 0) 0.50 0.46 0.02
(-16, 0.7; 0) 0.64 0.72 <0.01 (-24, 0.9; 0) 0.80 0.86 <0.01
(-16, 0.8; 0) 0.69 0.78 <0.01 (-24, 0.4; -12) 0.34 0.26 <0.01
(-16, 0.8; 0) 0.69 0.78 <0.01 (-24, 0.6; -12) 0.49 0.44 0.05
(-16, 0.1; -4) 0.11 0.09 0.27 (-8, 0.2; 0) 0.17 0.13 0.05
(-16, 0.5; -4) 0.42 0.34 <0.01 (-8, 0.5; 0) 0.47 0.37 <0.01
(-16, 0.9; -4) 0.76 0.80 <0.01 (-8, 0.8; 0) 0.70 0.75 0.04
(-15, 0.5; -4) 0.44 0.34 <0.01 (-8, 0.8; 0) 0.68 0.75 <0.01
(-16, 0.5; -5) 0.40 0.34 <0.01

List of choice tasks with choice proportions per treatment condition. The indicated p-values are based
on two-sided Wilcoxon rank sum tests for difference between treatments.

parametric tests on the differences in calculated choice proportions, which correspond

to Figure 7. The tables further provide nonparametric tests for the proportions of risk

taking across the treatment conditions.

A.2 Stimuli and results Experiment II

Table A.3 presents the choice proportions for the three treatment conditions by task (24,

p; 0). This analysis employs nonparametric tests to assess the differences in calculated

choice proportions. Notably, we observe that subjects’ choices in Sequential-binary choice

and choice lists do not differ significantly (refer to Column p-value (3)), as illustrated

in Figure 12. In contrast, it is evident that for small and moderate probabilities (p =

0.1, 0.3, 0.5), subjects answering the binary choice task opted for fewer risky options

compared to their counterparts in both the Sequential-binary choice and choice lists

conditions.
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Table A.3: binary choice proportions of risky option by treatment for CEs over (24, p; 0))

p binary choice Sequential-binary choice choice lists p-value (1) p-value (2) p-value (3)

0.1 0.085 0.210 0.235 <0.01 <0.01 0.368
0.3 0.155 0.320 0.321 <0.01 <0.01 0.799
0.5 0.289 0.438 0.431 <0.01 <0.01 0.780
0.7 0.496 0.540 0.540 0.434 0.648 0.688
0.9 0.690 0.692 0.717 0.906 0.311 0.308

List of choice tasks with choice proportions per treatment condition. The indicated p-values are based
on two-sided Wilcoxon rank sum tests for difference between treatments. Specifically, Column p-value
(1) indicates the difference between treatment binary choice and Sequential-binary choice, Column
p-value (2) indicates the difference between treatment binary choice and choice lists, and Column
p-value (3) indicates the difference between treatment Sequential-binary choice and choice lists.

A.3 Endogenous reference points

A key reason why choice lists tasks are the tool of choice to elicit PT parameters is that

they allow to exogenously fix the reference point to 0. This is essential if one wants to

separately identify all the different components of PT, since in the presence of endoge-

nous reference points all wagers would become mixed. Hershey and Schoemaker (1985)

claimed that varying a probability in a list while keeping the sure amount fixed could

create a risk of endogenous reference dependence. Given that in such a case all wagers

involve both gains and losses, PT can no longer be fully identified. In particular, it would

no longer be possible to separately identify reference-dependence and rank-dependence

(i.e., loss aversion and optimism/pessimism for gains and losses). One possibility is then

that in binary choice the sure outcome may also act as an endogenous reference point,

which would be troublesome for the identification of the full array of PT parameters. To

test this, we rescale the PT equation following Hershey and Schoemaker (1985):

u(0) = w+(p)u(x− s)− λw−(1− p)u(s),

where u is a reference-dependent utility function, w+ and w− the probability weighting

functions for gains and losses, respectively, and λ captures loss aversion. We have all the

elements to identify utility function curvature and probability weighting from choice lists

tasks for both gains and losses. This implies that we can infer the loss aversion coefficient

that would explain the discrepancy between choice lists and binary choice tasks from the

following equation:

λ =
w+(p)

w−(1− p)

u(x− s)

u(s)
. (1)

49



The exact parameters will of course depend on assumptions made about functional forms

and errors. We use a ‘standard’ PT implementation. That is, we estimate a simple

aggregate PT model from the choice lists data, by letting u(x) = 1−exp(−ρx)
ρ , with dif-

ferent parameters for gains and losses, entered in terms of absolute amounts. Using an

exponential utility function specification avoids issues in the identification of loss aver-

sion when different utility function coefficients are estimated for gains and losses using

CRRA functions (Köbberling and Wakker, 2005). The probability weighting function is

w(p) = δpγ

δpγ+(1−p)γ , again with different parameters for gains and losses. We specifically

employ a flexible 2-parameter function to give the PT explanation its best possible shot.

We estimate the model using Bayesian techniques in Stan (see section B.4 for an example

of the code used). The priors used for the parameters are mildly regularizing, i.e. they

are uninformative in the sense of being centred on neutral values (ρ = 0, δ = γ = 1),

and they are diffuse, in the sense that the standard deviation is chosen in a way as to

include a large range of parameters into the possible range (e.g., for γ and δ, 95% of the

probability mass is allocated to the interval between 0 and 7).

The estimations are executed based on a standard discrete choice Probit model, with a

noise term defined on the value scale, and errors that are heteroscedastic depending on

the length of a choice list. The choice probability is modeled as follows:

Pr[(x, p; y) ≻ s] = Φ

[
πu(x) + π̃u(y)− u(s)

σ|x− y|

]
,

where Φ is the standard normal cumulative distribution function providing the ‘link

function’, π indicates a decision weight, and π̃ is the decision weight associated to the

complementary event. For gains and losses, π = w(p) and π̃ = 1− π, whereas for mixed

prospects π = w+(p) and π̃ = w−(1−p), where + and − indicate the weighting function

for losses respectively. The likelihood function is then constructed by mapping the choice

patterns for the risky option into choice probabilities via a Bernoulli density.

Once we have obtained the PT parameters from the choice lists data for gains and

losses, we calculate the choice objects p, x − s and s for each of the three tasks in

figure 7, panel A, in the main text. We then inject the PT parameters estimated from

choice listss. Importantly, we do so using the entire vector of posterior draws for each

of the parameters, which allows us to take the uncertainty in the parameter estimates
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into account, and thus to obtain credibility intervals for the estimates of loss aversion.

Finally, we use the equations thus obtained to calculate the loss aversion parameter, λ,

that would be needed to bridge the gap between choice lists and binary choice for each

of the three data points displayed in the figure (i.e., for p = {0.1, 0.5, 0.9}).

For wagers offering £24 with probability p = {0.1, 0.5, 0.9} or else 0, we find that the loss

aversion coefficient needed to explain the gap between choice lists and binary choice for

p = 0.01 is λ0.1 = 3.05 [2.93 ; 3.17]. The loss aversion coefficient for intermediate prob-

abilities is λ0.5 = 2.50 [2.42 ; 2.55], and is thus significantly smaller. The loss aversion

coefficient for large probabilities is λ0.9 = 3.46 [3.20 ; 3.75], which is larger than for both

previous ones. A different coefficient is thus needed to close the gap for each probabil-

ity, implying that loss aversion is not a viable explanation for the discrepancy between

choice lists and binary choice we observe. Feldman and Ferraro (2023) have further-

more shown that even the gap between certainty equivalents and probability equivalents

cannot actually be organized by loss aversion.

A.4 Choice proportions for particular tradeoffs

In this subsection, we illustrate that individual decisions align with the aggregate results

reported in the main text by plotting choices between lotteries and sure amounts with

expected values that are close. Figure A.1 shows the proportion of risky choices for

these specific decisions in Experiment 1, while Figure A.2 presents the corresponding

proportions for Experiment 2.

A.5 IRRA over stakes

Panel A in Figure A.3 shows a measure of relative risk aversion in the Gain tasks,

given by the choice proportion of the wager subtracted from the probability of winning

(p− ĉ−y
x−y ). Note that in the case of y = 0, a normalized certainty equivalent subtracted

from the probability allows us to capture changes in relative risk aversion in the sense

of Arrow-Pratt. We thus use tasks varying x, while keeping y fixed at 0 and p fixed at

0.5.

Figure A.3 shows the results. We see important level effects indicating generally higher

levels of relative risk aversion in binary choice than in choice lists. Patterns for choice

lists tasks indicate the typical increasing relative risk aversion (IRRA) documented in the
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Figure A.1: Risky choice proportion of individual decisions by treatments
The figure presents the proportions of risky choices for individual decisions close to the expected value, focusing
on lotteries with one non-zero outcome and either small or large probabilities (x, p; 0). In these selected decisions,
variation in the tendency to choose the risky option would reflect the standard fourfold pattern. Panel A displays
the proportions for positive tasks, while Panel B displays the proportions for negative tasks.

literature (Holt and Laury, 2002; Bouchouicha and Vieider, 2017; Di Falco and Vieider,

2022). A pattern of IRRA of similar magnitude is also observed in binary choice tasks,

thus pointing to the robustness of the phenomenon. Panel B shows changes in relative

risk aversion with stake size in Loss tasks. Most measures are negative, indicating

a tendency towards risk seeking. In choice lists we observe a pattern resembling the

constant relative risk aversion documented for losses in previous studies (Fehr-Duda

et al., 2010; Bouchouicha and Vieider, 2017). In binary choice, however, we observe clear

evidence for increasing relative risk aversion. In other words, whereas in choice lists tasks

the patterns for losses tend to differ from the ones for gains, as also documented in the

previous literature, in binary choice we find convergent evidence for increasing relative

52



(24, 0.1; 0) (24, 0.3; 0) (24, 0.5; 0) (24, 0.7; 0) (24, 0.9; 0)

3 8 12 16 21

0.2

0.4

0.6

Sure Amount

P
ro

po
rt

io
n 

of
 R

is
ky

 C
ho

ic
es

binary choice sequential binary choice choice lists

Figure A.2: Risky choice proportion of individual decisions by treatments
The figure shows the choice proportions of risky options for individual decisions at or near the expected value,
focusing on lotteries with one non-zero outcome (24, p; 0) in Experiment 2.
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Figure A.3: Nonparametric measure of relative risk aversion by stake size
The figure plots a nonparametric measure of relative risk aversion, defined as p − ĉ

y
, where ĉ is the certainty

equivalent resulting from the choices. The figure shows the evolution of the measure as the prize is increased
from £8 to £24. Panel A shows the patterns for gains, and Panel B for losses.

risk aversion. Overall, increasing relative risk aversion is thus more robust in binary

choice than in choice lists.

A.6 Likelihood (in)sensitivity

Figure A.4 demonstrates the likelihood (in)sensitivity difference across these two condi-

tions with the complete dataset.
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Figure A.4: Measured likelihood sensitivity in choice lists and binary choice
Empirical cumulative distribution function of the likelihood-sensitivity index, calculated as the average of
the differences in normalized CEs for the pairs (±8, 0.8; 0) and (±8, 0.2; 0), (±16, 0.9;±4) and (±16, 0.1;±4),
(±16, 0.8; 0) and (±16, 0.2; 0), (±16, 0.7; 0) and (±16, 0.3; 0), and (±24, 0.9; 0) and (±24, 0.1; 0). Panel A
presents scatter plots of observations for gains. Panel B displays observations for the losses. Vertical solid
lines indicate the point of risk neutrality.
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Figure A.5: Multiple Switching Likelihood for choice lists and binary choice.
The figure compares subjects’ tendency to switch from one option to another as the sure amount increases. The
expected value difference on the x-axis is calculated as the sure amount minus the expect value of the prospect,
and the y-axis shows switching frequencies with each increase in the sure outcome.

A.7 binary choice consistency and errors

In the main text, we have shown how violation or choice inconsistencies across tasks are

more severe in choice lists than binary choice. Here, we show that within-list inconsis-

tencies – something akin to ‘multiple switching’ – is more severe in binary choice, but is
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nevertheless highly regular and concentrated around plausible points of indifference as

shown in Figure A.5. As pointed out by Cubitt, Navarro-Martinez and Starmer (2015)

and Agranov and Ortoleva (2017), such a pattern indicates those multiple switching is

driven by indifference between two options.

B Meta-Analysis

B.1 Method

Paper selection . To substantiate our assertion that the absence of the four-fold pattern

is not infrequent in the context of employing binary choices for the elicitation of risk pref-

erences, we undertook a comprehensive meta-analysis. To ensure its unbiasedness, we

rigorously selected relevant papers based on well-defined inclusion criteria. These criteria

centered on the inclusion of experimental papers that estimated parameters of the prob-

ability weighting function under monetary risk, encompassing laboratory, lab-in-field, or

online studies. Notably, this encompassed papers using pure binary choices or certainty

equivalent choice lists as risk preference elicitation method in experiments. Regarding

choice lists, specifically, we keep iterative certainty equivalent choice lists (e.g., Tversky

and Kahneman, 1992) but drop those following bisection procedures (e.g., Abdellaoui,

2000). Our search for these papers primarily involved the scientific citation indexing

database Web of Science. We initially screened titles and abstracts, and subsequently

evaluated the remaining papers against our inclusion criteria, coding the relevant infor-

mation. Additionally, we explored IDEAS/RePEc and Google Scholar for unpublished

working papers to ensure a comprehensive review of the literature.

It is worth highlighting that certain studies encompass multiple estimations of prospect

theory (or rank-dependent utility) parameters, owing to the adoption of various model

specifications, the introduction of multiple treatment arms, or the examination of sub-

sample variations. To ensure uniformity and facilitate comparative analysis across stud-

ies, we have employed the following filtering criteria:

• In the case of studies implementing diverse model specifications, characterized

by varying utility functions and probability weighting functions, our initial step

involves excluding those employing non-Constant Relative Risk Aversion (non-

CRRA) utility functions. This step is imperative as our meta-analysis relies on
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the imputation of the certainty equivalent of a specific lottery (100, 0.1; 0), and

non-CRRA utility functions (e.g., exponential functions) can exert quantitative

and even qualitative impacts on the calculated results. Subsequently, to align with

the objectives of our meta-analysis, we prioritize the selection of estimations that

either directly report the standard error or provide information that enables the

approximate calculation of the standard error. Lastly, we opt for the estimation

that is predominantly discussed or initially presented in the main body of the text.

• In instances where studies involve multiple treatments or explore specific popula-

tion subsets, our focus is on selecting estimations associated with the control condi-

tions or groups; Otherwise we are unable to know whether the presence or absence

of the fourfold pattern is caused by the treatment or by population heterogene-

ity. For example, we do not incorporate observations stemming from treatments

such as the sampling treatment in (Glöckner et al., 2016) or the outcome feedback

treatment (Haffke and Hübner, 2014) in our analysis.

In terms of the availability of standard errors, a crucial element for our meta-analysis, it’s

noteworthy that 30.5% of estimations (N=36) within our dataset lack information that

would be sufficient to calculate standard errors, including the seminal work by Tversky

and Kahneman (1992). Among the remaining observations, a substantial majority, ac-

counting for 76.8% (N=63), explicitly provide standard errors or other statistical metrics

that allow for the precise calculation of standard errors, such as the inclusion of 95%

confidence intervals. Additionally, there are 14 observations that present statistics such

as 95% credible intervals, which, without certain assumptions, cannot be utilized directly

in our analysis. In these cases, we adopt a conservative approach to ensure data retention

while managing the potential inaccuracies. For example, when confronted with a study

that exclusively reports the maximum and minimum values of estimated parameters, we

calculate a conservative standard deviation as (Max − Min)/4. This method enables

us to include the data while mitigating the impacts of imprecision. Apart from the esti-

mates of our Experiment I, our final dataset includes 76 papers and 141 PT estimates,

as listed in Subsection B.5.

Predictive certainty equivalents and associated standard error calculation

With the collected data, we first calculate the predicted certainty equivalent for each

observation, ĉ = u−1[w(p)u(x)], where u designates the utility function, w the probabil-
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ity weighting function, and u−1 is the inverse of the utility function. We use x = 100 and

p = 0.1, but the qualitative results do not change much for different monetary outcomes

or even smaller probabilities. To obtain the standard errors of such predicted certainty

equivalents, we then apply a bootstrap procedure. Specifically, we assume that each PT

parameter is normally distributed around their mean estimate with variance equal to the

squared standard error of the parameter encoded from the papers. We then draw 4000

samples from these parameter distributions to obtain a vector of certainty equivalents of

(100, 0.1) for each study. We then use this vector to obtain the standard error associated

with the predicted certainty equivalent.

Some studies that do not report any standard errors for their PT parameter estimates.

nor any information from which tsuch errors could be reasonably approximated. As a

result, we could not apply the bootstrap procedure to these studies. Given this situation,

one option might be to drop these observations from the meta-analysis. This would,

however,result in the loss of a substantial number of observations, including the seminal

study of Tversky and Kahneman (1992). Also, it is possible that these studies which do

not report standard errors are different than those indeed reporting. This implies that

dropping these incomplete observations could lead to biased conclusions. Due to these

reasons, we choose to impute the standard errors of the predicted certainty equivalent

for those incomplete observations.

The approach we take involves estimating the parameters characterizing their distribu-

tion in the data from the equation log (seo) ∼ N
(
µse, σ

2
se

)
, where using the log ensures

that we only impute positive values. Utilizing these distributional parameters, we then

imputed the missing values in SE by modeling log (sem) ∼ N
(
µ̂se, σ̂

2
se

)
, where the sub-

scripts o and m denote observed and missing, respectively. The parameters
(
µ̂se, σ̂

2
se

)
represent the estimated quantities. In implementing this estimation, we will initially

obtain values for the missing observations in standard errors (SE) that maintain the

same mean and variance. However, our approach can be significantly improved by iden-

tifying variables within our dataset that are strongly associated with SEs. The most

effective predictors of SEs in our data include the predicted certainty equivalent, the

dummy indicator whether the experiment is conducted in a lab, the dummy indicator

whether the experiment is conducted in the field, the number of subjects, and the dummy

indicator of whether the adopted PWF has two parameters. We thus conduct the impu-
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tation by defining µse = αse + βse × Z, where Z represents the vector of these optimal

predictors.

Meta-analysis: Bayesian hierarchical estimation . Consider the dataset (ĉi, sei),

where ĉi is the imputed certainty equivalent of the ith observation in the dataset and the

associated sei quantifies the uncertainty around it. We assume that the ĉi is normally

distributed around the parameter c̃i:

ĉi ∼ N
(
c̃i, se

2
i

)
, (2)

where the variability of ĉi around the true but latent mean c̃pi is supposed to stem from

sampling variation in small studies, as captured by the known standard error sei. This

is indeed a central feature of meta-analysis or indeed of measurement error models in

general – see Vieider (2024) for a discussion and a tutorial.

Sampling variation contributes to the observed variability in c̃i, but it’s not the only

source; there may also be “genuine” heterogeneity across measurements, perhaps due

to differing experimental settings, different subject pools, etc. To account for this, we

assume that the study-level c̃i follow a normal distributionacross all studies:

c̃i ∼ N
(
µ, τ2

)
, (3)

where µ represents the meta-analytic mean of the imputed certainty equivalents, and τ

represents the standard deviation of the true, latent certainty equivalents across studies.

Incorporating variation across estimates due to observable characteristics, commonly

known as meta-regression, can be achieved simply by defining µ = XβXβXβ, where XXX is a

matrix of study characteristics, including a column vector of 1s, and βββ is a vector of

regression coefficients.

We estimate our models in Stan (Carpenter et al., 2017), executed from R (R Core

Team, 2023) through CmdStanR (Gabry et al., 2024). Population-level parameter priors

are selected to be mildly regularizing, providing informative yet broad ranges significantly

larger than the expected estimates from data analysis. Lower-level parameter priors are

derived from these estimated population-level parameters, ensuring a cohesive modeling

framework.
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B.2 Results

Meta-analysis Table B.1 presents the meta-analysis results for four groups. The abso-

lute values of the average predictive certainty equivalent (CE) for the wager (100, 0.1)

in the choice lists studies are above 0.1 for both gains and losses, with both results be-

ing significant within the 95% CrI. Conversely, the absolute values for the binary choice

studies are significantly below 0.1 for both gains and losses.

Table B.1: Meta-analysis results of normalized predictive CEs

Group Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
(100, 0.1) (100, 0.9)

choice lists-gains 0.180 0.010 0.160 0.201 0.721 0.014 0.693 0.748
binary choice-gains 0.040 0.006 0.029 0.051 0.746 0.022 0.701 0.788
choice lists-losses 0.212 0.022 0.170 0.256 0.764 0.014 0.736 0.790
binary choice-losses 0.074 0.011 0.054 0.097 0.784 0.033 0.714 0.842

Figure B.1 and Figure B.2 present the funnel plots of the calculated predictive CEs for

gains and losses, respectively. Our primary focus here is on Figure B.1, which indicates

that there is no significant publication bias favoring the four-fold pattern for both groups

of studies.
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Figure B.1: Funnel plots of inferred CEs for a wager (100, 0.1) and (−100, 0.1)
Funnel plots of calculated normalized CEs and associated standard errors. Panel A scatters CEs-SEs
observations for the gain wager (100, 0.1) inferred from studies using certainty equivalents or binary choices
to measure risk attitudes, whereas panel B shows CEs-SEs observations for the loss wager (−100, 0.1).
The vertical solid lines mark the mean of normalized CEs from each condition, while the dashed gray line
indicates the neutrality status (normalized CE = p = 0.1). Two dashed curves delineate the boundaries
for a statistically significant deviation from the “true” CEs value. The y-axis is presented in log scale for
improved visualization.

Meta-regression Our meta-regression aggregates all predictive certainty equivalents

(CEs) and incorporates a range of covariates. These include indicators for whether the

method used was valuation or choice (choice lists), whether the payoff domain was pos-
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Figure B.2: Funnel plots of inferred CEs for a wager (100, 0.9) and (−100, 0.9)
Funnel plots of calculated normalized CEs and associated standard errors. Panel A scatters CEs-SEs
observations for the gain wager (100, 0.9) inferred from studies using certainty equivalents or binary choices
to measure risk attitudes, whereas panel B shows CEs-SEs observations for the loss wager (−100, 0.9).
The vertical solid lines mark the mean of normalized CEs from each condition, while the dashed gray line
indicates the neutrality status (normalized CE = p = 0.9). Two dashed curves delineate the boundaries
for a statistically significant deviation from the “true” CEs value. The y-axis is presented in log scale for
improved visualization.

itive or negative (Loss), whether the incentive was real or hypothetical (Hypothetical),

whether each choice included a sure amount option (Sure), and whether the experimen-

tal environment was a field experiment (Field). Additionally, the regression includes

two interaction terms: one between the method dummy and payoff domain, and another

between the payoff domain and incentive type. Finally, the regression incorporates other

characteristics related to the stimuli, such as the largest amount and the highest prob-

ability in the lottery outcomes. For the wager (100, .1), Table B.2 indicates that the

coefficient for the choice lists dummy variable is 11.171 and for the dummy variable Loss

is 3.964, both showing significant positive impacts. No other variables significantly in-

fluenced the predictive CEs. The table provides the estimation results for the predictive

CE of (100, 0.9). For this predictive CE, we do not see a significant difference between

the two elicitation methods, namely choice lists and binary choice.

B.3 Robustness

B.3.1 Different standard error imputation methods

To verify the robustness of our meta-analysis results concerning the calculation of predic-

tive certainty equivalents’ standard error (SE), this subsection introduces two alternative

imputation methods to get standard errors for those incomplete observations. Specif-

ically, the first method uses Bruhin, Fehr-Duda and Epper (2010) as the benchmark
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Table B.2: Meta Regression of Predictive CE of (100, 0.1) and (100, 0.9)

Variable Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
(100, 0.1) (100, 0.9)

choice lists 11.39 2.02 7.41 15.25 -4.23 3.25 -9.42 -1.24
Loss 3.24 1.44 0.39 6.11 -1.45 4.88 -6.67 4.70
Hypothetical -2.10 1.85 -5.76 1.46 -6.14 2.86 -9.34 -1.80
sure_presence 2.25 1.96 -1.56 6.09 3.86 2.24 1.79 7.37
Log(Stiml_high_Amt) -0.01 0.36 -0.70 0.72 0.27 0.56 -0.61 0.93
Log(Stiml_high_P) 7.93 4.77 -1.19 17.93 -4.32 13.25 -21.69 9.46
Stiml_Num_outcome -0.81 0.75 -2.30 0.65 -0.32 1.60 -1.97 2.19
Field 1.97 2.35 -2.49 6.77 -0.67 4.45 -5.89 6.25
CE*Loss 1.06 2.17 -3.27 5.26 1.25 3.80 -4.32 5.08
Loss*Hypothetical -2.47 2.63 -7.55 2.74 5.73 6.29 -5.09 10.54
Cons 7.12 2.27 2.62 11.68 80.84 1.91 77.85 83.08

Note: This table presents a meta-regression of predictive certainty equivalents (CEs), incorporating the following
variables: choice lists: Indicator variable (1 = valuation method, 0 = choice method) used to distinguish whether
certainty equivalents or binary choices were applied. Loss: Indicator variable (1 = negative payoff domain, 0 =
positive payoff domain), representing whether the study dealt with losses or gains. Hypothetical : Indicator variable
(1 = hypothetical incentives, 0 = real incentives), denoting whether monetary incentives were hypothetical or
real. Sure: Indicator variable (1 = sure option included, 0 = no sure option), capturing whether a sure amount
option was provided in the choice set. Log(Stimul_high_Amt): The natural logarithm of the largest monetary
amount presented in the stimuli (lottery). Log(Stimul_high_P): The natural logarithm of the highest probability
used in the lottery outcomes. Stimul_Num_outcome: The number of outcomes in the stimuli (lottery). Field :
Indicator variable (1 = field experiment, 0 = laboratory experiment), distinguishing between field and laboratory
settings. choice lists*Loss: Interaction term between valuation method and the payoff domain (loss or gain).
Loss*Hypothetical : Interaction term between the payoff domain (loss or gain) and the incentive type (hypothetical
vs. real).

study and calculate the SD for other studies as follows:

SEi = SE∗ ·
√
N∗

√
Ni

, (4)

where SE∗ and N∗ represent the bootstrapped standard error and the number of subjects

from the “Zurich-03 ” study in Bruhin, Fehr-Duda and Epper (2010), and Ni is the

number of subjects in study i. Table B.3 reports the resulting estimates with using the

newly derived standard errors for the wager (100, 0.1) and (100, 0.9), which are very

close to those we report in the main text.

Table B.3: Meta-analysis Results with the first different standard error calculation method

Group Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
(100, 0.1) (100, 0.9)

choice lists-gains 0.180 0.010 0.160 0.201 0.725 0.014 0.697 0.753
binary choice-gains 0.042 0.006 0.030 0.053 0.759 0.022 0.715 0.803
choice lists-losses 0.224 0.021 0.185 0.266 0.773 0.014 0.744 0.801
binary choice-losses 0.076 0.011 0.056 0.097 0.805 0.028 0.744 0.856

61



Table B.4: Meta-analysis Results with the second different standard error calculation method

Group Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
(100, 0.1) (100, 0.9)

choice lists-gains 0.182 0.010 0.162 0.202 0.727 0.014 0.699 0.754
binary choice-gains 0.042 0.006 0.030 0.055 0.760 0.022 0.717 0.803
choice lists-losses 0.226 0.021 0.185 0.268 0.774 0.014 0.746 0.802
binary choice-losses 0.077 0.011 0.056 0.099 0.804 0.029 0.742 0.856

Table B.5: Meta-analysis Results for the inferred CE of different wager

Group Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
(200, 0.05) (20, 0.05)

choice lists-gains 0.130 0.009 0.112 0.149 0.133 0.009 0.116 0.152
binary choice-gains 0.018 0.003 0.012 0.025 0.019 0.003 0.013 0.025
choice lists-losses 0.157 0.020 0.118 0.198 0.161 0.020 0.122 0.201
binary choice-losses 0.038 0.007 0.025 0.051 0.038 0.007 0.026 0.052

The second SE calculation method instead takes the average standard deviation of all

studies from a same group (binary choice or choice lists), denoted as SDaverage. Then,

for every single incomplete observation, we can derive its predictive CE’s standard error

as below:

SEi =
SDaverage√

Ni
, (5)

where Ni is the number of subjects for study i. Table B.4 reports the results after

adopting these differently derived standard errors for the wager (100, 0.1) and (100,

0.9). Again, these results are essentially similar to those reported in the main text, and

thus showing that our findings of the meta analysis are robust to different standard error

calculation approaches.

B.3.2 Different Wagers

To demonstrate the robustness of our conclusion with respect to the wager employed

for the predictive CE calculation, we have re-estimated using an alternative wager (200,

0.05) and (20, 0.05) respectively. Tables B.5 presents these estimates, which are largely

consistent with our primary conclusions detailed in the main text, namely the absence

of the four-fold pattern in the binary choice condition.
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B.4 Structural Estimation of PT parameters

Methods and code We recover PT parameters from aggregate Bayesian estimations

using Stan. In our preferred specification reported in the main text, we use a power util-

ity function, u(x) = xρ. Following the majority of the papers in our meta-analysis, we

estimate a 1-parameter specification of the probability weighting function proposed by

Prelec (1998), which takes the form w(p) = exp(−(−ln(p))γ), where values of γ < 1 cap-

ture likelihood insensitivity. Estimation results using alternative 1-parameter functions,

such as the one of Tversky and Kahneman, produce very similar results. Estimations

obtained using 2-parameter functions are discussed farther below.

We estimate the functionals using purpose-coded models in Stan, which we launch from

R. Vieider (2024) provides a detailed tutorial on estimations of structural models in Stan.

We use the following code:

data {

int <lower=1> N;

array[N] real high;

array[N] real low;

array[N] real sure;

array[N] real p;

array[N] int choice_risky;

}

parameters {

real rho;

real <lower=0> gamma;

real <lower=0> sigma;

}

model {

vector[N] pw;

vector[N] pv;

vector[N] udiff;

rho ~ normal (1 , 0.5);

gamma ~ normal (1 , 0.5);

sigma ~ normal (0 , 0.5);

for (i in 1:N) {

pw[i] = exp(-(-log(p[i]))^ gamma);
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pv[i] = pw[i] * pow(high[i], rho) + (1 - pw[i]) * pow(low[i], rho);

udiff[i] = (pv[i] - pow(sure[i], rho)) / (sigma * (high[i] - low[i]));

}

choice_risky ~ bernoulli_logit(udiff);

}

We also estimate PT parameters with the 2-parameter version of probability weighting

function, w(p) = exp(−δ(−ln(p))γ). The code looks as follows:

data {

int <lower=1> N;

array[N] real high;

array[N] real low;

array[N] real sure;

array[N] real p;

array[N] int choice_risky;

}

parameters {

real rho;

real <lower=0> gamma;

real <lower=0> delta;

real <lower=0> sigma;

}

model {

vector[N] pw;

vector[N] pv;

vector[N] udiff;

rho ~ normal (1 , 0.5);

gamma ~ normal (1 , 0.5);

delta ~ normal (1 , 0.5);

sigma ~ normal (0 , 0.5);

for (i in 1:N) {

pw[i] = exp(-delta*(-log(p[i]))^ gamma);

pv[i] = pw[i] * pow(high[i], rho) + (1 - pw[i]) * pow(low[i], rho);

udiff[i] = (pv[i] - pow(sure[i], rho)) / (sigma * (high[i] - low[i]));

}

choice_risky ~ bernoulli_logit(udiff);
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}

Estimation results Table B.6 and B.7 report PT parameters’ estimation results for Ex-

periment I and II respectively. Table B.6 includes four groups: binary choice/choice lists

* Gains/Losses while Table B.7 includes the three treatments in the gain domain.

Table B.6: Prospect theory parameters estimation results - Experiment I

Group ρ SDρ γ SDγ δ SDdelta σ SDσ

Prelec− I

choice lists-gains 0.93 0.01 0.56 0.01 0.12 0.00
binary choice-gains 0.56 0.01 0.71 0.01 0.04 0.00
choice lists-gains 0.91 0.01 0.83 0.01 0.13 0.00
binary choice-gains 0.76 0.01 1.05 0.02 0.07 0.00

LLO

choice lists-gains 1.00 0.01 0.55 0.01 0.78 0.01 0.24 0.01
binary choice-gains 0.81 0.01 0.89 0.01 0.47 0.01 0.15 0.01
choice lists-gains 1.13 0.02 0.86 0.02 0.69 0.02 0.42 0.03
binary choice-gains 1.17 0.02 1.39 0.03 0.51 0.01 0.44 0.02

Table B.7: Prospect theory parameters estimation results - Experiment II

Parameter Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
Prelec− I Prelec− II

choice lists
ρ 0.857 0.023 0.814 0.901 0.626 0.069 0.487 0.763
γ 0.649 0.028 0.594 0.705 0.614 0.028 0.562 0.670
δ 0.594 0.107 0.385 0.816
σ 0.139 0.010 0.120 0.160 0.061 0.016 0.033 0.097
Sequential binary choice
ρ 0.926 0.017 0.894 0.959 0.818 0.064 0.688 0.949
γ 0.530 0.019 0.494 0.568 0.525 0.019 0.491 0.562
δ 0.798 0.112 0.583 1.035
σ 0.119 0.007 0.107 0.133 0.084 0.019 0.051 0.129
binary choice
ρ 0.571 0.012 0.546 0.595 0.596 0.048 0.505 0.694
γ 0.750 0.024 0.707 0.799 0.758 0.027 0.708 0.815
δ 1.070 0.121 0.842 1.322
σ 0.033 0.001 0.031 0.036 0.038 0.007 0.026 0.053
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C A noisy coding model of binary choice versus choice lists

Here, we formalize the intuition presented in the main text by sketching a stylized noisy

coding model. However, we stress that the intuition described in the main text is con-

siderably more general than many of the specific modelling choices and assumptions we

make here. Indeed, any noisy coding model in which sequential evaluation results in

an accumulation of coding noise will deliver key insights like those we derive here. For

instance, Khaw, Li and Woodford (2023) present a closely related model of valuation

built on somewhat different detail-level modeling choices, but which shares some of the

key predictions we derive here.

Lottery evaluation

We discuss choices between a lottery (x, p; y) and a sure outcome c, following the setup

in all our experiments. We start by describing the evaluation of the lottery, i.e. of the

log-odds in favour of winning a prize. To introduce noisy cognition, we assume that

the log-odds are not directly accessible to the DM but are noisily coded, i.e. they are

mentally represented by a signal rp. On average, this signal will be unbiased, i.e. it will

reflect the true log-odds shown to the decision maker. In any specific instance, however,

the signal may be affected by some noise, which we assume to be normally distributed.

We thus obtain the following likelihood function encoding a given probability p:

rp ∼ N
(
ln

(
p

1− p

)
, ν2p

)
,

where ν2p is the variance of the coding errors.
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To decode the signal – to rein in the errors incurring in the coding process – the signal

is decoded by combination with a learned prior, capturing the statistics of the environ-

ment. Note that this prior does not necessarily correctly reflect those statistics, either

because few stimuli have been encountered as of yet (as is the case at the beginning

of an experiment, where the full stimulus distribution will only be known once the ex-

periment is over), or because of the influence of a hyperprior summarizing experiences

across different environments. Another possibility is that positive versus negative expe-

riences may have asymmetric impacts on learning (see Vieider, 2023a, for a formal model

of learning in the present context, and a discussion of why learning will necessarily be

affected by noise). In particular, if the prior mean is “too pessimistic” relative to the

stimuli presented, then this will results in risk averse choices.

Decoding the log-odds signal by a conjugate normal prior, which takes the form N (ln(η), σ2
p),

will yield the following posterior distribution:

ln
p

1− p

∣∣ rp ∼ N

(
γ rp + (1− γ) ln(η) ,

ν2σ2
p

ν2 + σ2
p

)
. (6)

For simplicity, we will henceforth normalize the prior SD to 1 by dividing all parameters

by σ2
p. The upshot is that we reduce the system by one parameter without losing any

information (see Natenzon, 2019, for an analogous simplification). The coding noise

becomes ν̂p =
νp
σp

, thus capturing the coding noise relative to the prior variance of the

log-odds. The Bayesian evidence weight is then defined as γ ≜ 1
ν̂2p+1

= 1
ν2p/σ2

p+1
.

To make this expression observable to the econometrician, we further condition the pos-

terior mean on many repetitions of the same stimulus p. The variation of responses across

repeated presentations of the same stimulus yields the following observable expression,

referred to as the response distribution (Ma, Kording and Goldreich, 2023):

E
[
γ rp + (1− γ) ln(η)

∣∣ p ] ∼ N
(
γ ln

(
p

1− p

)
+ (1− γ) ln(η) , γ2ν2p

)
. (7)

Proof. Let z ∼ N (ẑ , τ2). From the well-known properties of the normal distributions it

follows that bz+a ∼ N (bẑ+a , b2τ2). The result above obtains by letting b = γ, z = rp,

a = (1− γ) ln(η), ẑ = ln
(

p
1−p

)
, and τ = νp.

The average inference on the log-odds displayed above is now systematically shaded or

74



shrunk towards the mean of the prior. Intuitively, this happens because the signal is only

taken into account in proportion to the ‘confidence’ the DM has in the signal, as captured

by its precision (the inverse of the coding noise variance, ν̂−2, since we can alternatively

define γ = ν̂−2

1+ν̂−2 ). This results in systematic bias in the evaluation of the log-odds, which

as we will see shortly is at the origin of probability distortions (see Oprea and Vieider,

2024, for an experimental test of this mechanism). Indeed, substituting δ ≜ η1−γ into

the expectation of the normal distribution above yields a linear in log-odds probability

weighting function that is frequently used in the prospect theory literature (Gonzalez

and Wu, 1999; Bruhin, Fehr-Duda and Epper, 2010).

C.1 Binary binary choice

In binary binary choice, the posterior for the log-odds derived above is simply compared

to the posterior for the comparative outcomes, given by the log cost-benefits, ln
(
c−y
x−c

)
(this derives from a choice rule that maximizes expected value – see Vieider, 2024, for

a detailed discussion). Importantly, we assume that the log-odds of the lottery and

the log-cost benefits are evaluated simultaneously and independently. This seems indeed

natural, inasmuch as there is no reason in binary binary choice why the evaluation of one

dimension should be conditioned on the other. Given this independence in evaluations,

the signal for the log cost-benefits will once again be unbiased, having as its mean the

true log cost-benefits, but potentially deviating from them in any single draw from the

following distribution:

ro ∼ N
(
ln

(
c− y

x− c

)
, ν2o

)
,

where νo is the standard deviation of outcome coding noise.

The evaluation of the log cost-benefits then proceeds much like for the log-odds above

(see Vieider, 2024, for details). For simplicity, we assume that costs and benefits are

expected to be equal in the prior, so that the mean of the log cost-benefits is 0. This

seems a natural assumption, and it is made without loss of generality, as the results

presented below will generalize to setups with a non-degenerate prior for outcomes. The

response distribution will now take the following form:

E [α ro | c, y, x ] ∼ N
(
α ln

(
c− y

x− c

)
, α2ν̂2o

)
, (8)
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where similarly to above ν̂o =
νo
σ2
o

is the normalized outcome coding noise, and α ≜ 1
ν̂2o+1

is the outcome discriminability parameter.

Following an EV maximization rule that is often employed in signal detection theory

(Green, Swets et al., 1966; Gold and Shadlen, 2001), we assume that the log-odds are

traded off against the log cost-benefits to reach a decision. Given that the objective

quantities are not available to the decision maker, she decides instead based on her

posterior inferences on those quantities. On average, this will result in the following

stochastic choice rule observable to the econometrician:

Pr[(x, p; y) ≻ c] = Φ

α−1
[
γ ln

(
p

1−p

)
+ (1− γ) ln(η)

]
− ln

(
c−y
x−c

)
√
α−2γ2ν̂2p + ν̂2o

 . (9)

Proof. The proof proceeds as in Vieider (2024). Re-arrange the threshold equation in

(10) by multiplying both sides by α−1. The rest of the proof proceeds as usual.

Given that α−1 > 1 for any νo > 0, noise in outcome assessments counteracts noise in

probability assessments. Likelihood insensitivity is driven by γ/α < 1, and will thus ap-

pear whenever probability coding noise exceeds outcome coding noise, ν̂p > ν̂o, resulting

in γ < α. A second implication is that — as long as η < 1, indicating a “risk-averse

prior” as typically found in experiments (Vieider, 2024; Oprea and Vieider, 2024) — any

α < 1 (any noise in outcome perceptions) will reduce the upweighting of η < 1 towards

1 (towards 0 for ln(η)) produced by the power 1− γ. An interesting special case occurs

when coding noise is exactly equal for probabilities and outcomes: In this case, there

will be no probability distortions, and decisions will be an expression of the ‘true’ prior

mean ln(η). Interestingly, this case can occur even in the presence of considerable coding

noise, as long as the level of that noise is the same for probabilities and outcomes.

C.2 Choice lists

In choice list tasks the decision situation is quite different. DMs are confronted with

a list of varying sure outcomes, which is compared to an unchanging lottery, which is

prominently displayed. This makes it natural to assume that the lottery is evaluated

first, and that the point of indifference is found in a second stage conditional on the

evaluation of the lottery. The first stage will then result in an evaluation of the log-odds
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just as described above. It is in the second-stage evaluation — which now consists in

finding an indifference value — that the differences with binary choice situations will

emerge.

The second stage evaluation now consists in finding the value of the sure amount that

equalizes the log cost-benefits with the posterior inference on the log-odds, call it c∗.

This fundamentally changes the decision problem, since the DM now no longer tries to

infer the true log-cost benefits from an unbiased signal as in binary choice, but rather

tries to identify the (noisy signal for) the sure amount that produces indifference between

the posterior log-odds and the signal for the log-cost benefits. As we will see shortly,

this implies that the outcome signal is now no longer unbiased as in binary choice, but

is itself affected by systematic bias, since it centered on the posterior for the log-odds,

which is by definition a biased quantity in the presence of coding noise.

Technically, the choice lists task now takes the form of a search for the noisy outcome

signal (out of the vector of signals rororo in the list) that minimizes the absolute difference

between the log cost-benefit signal and the posterior of the log odds, i.e.

r∗o | c∗ = argmin
rororo|ccc

∣∣rororo − [γ rp + (1− γ) ln(η) ]
∣∣. (10)

This minimization problem will result in the selection of r∗o such that the average differ-

ence with the posterior mean of the lottery evaluation is 0. At the point of indifference,

we will thus observe the following relation on average:

r∗o − [γ rp + (1− γ) ln(η)] ∼ N

(
0 , ν2o +

ν̂2p
ν̂2p + 1

)
, (11)

where the variance is the sum of the coding noise variance of the outcome signal and the

variance of the posterior distribution of the log-odds in (6). It follows that

r∗o ∼ N

(
γ rp + (1− γ) ln(η) , ν2o +

ν̂2p
ν̂2p + 1

)
. (12)

An important insight results from this equation. Instead of an outcome signal that is

an unbiased estimator of the true log cost-benefits, as in choice, the DM now chooses a

signal that is centered on the posterior inference of the log-odds, which is a systematically

biased quantity. This, in turn, will result in the accumulation of probability coding noise
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with outcome coding noise in the process of finding an indifference value.

To see this technically, we start again by deriving the posterior distribution. To simplify

notation, we now define ν̃2o ≜ ν2o +
ν2p

ν2p+1
. Conditional on the noisy signal r∗o , the posterior

distribution takes the following form:

ln

(
c∗ − y

x− c∗

) ∣∣ r∗o ∼ N
(
β r∗o ,

ν̃2o
ν̃2o + 1

)
, (13)

where β ≜ 1
ν̃2o+1

. This equation assumes again implicitly (and without loss of generality)

that costs and benefits are equal in the prior on average, so that the prior mean drops

out of the equation (or equivalently, that the cost-benefit prior has mean 0).

To make the equation above observable to the experimenter, we can reformulate it in

terms of the response distribution, i.e. the distribution conditional on repeated presen-

tations of the same choice stimulus (given that rp and r∗o are stochastic due to coding

noise). To achieve this, we condition on two quantities: 1) the expectation of the prob-

ability response distribution in (7), which we omit from the notation below to avoid

clutter; and 2) on the vector of sure amounts:

E
[
E
(
ln

(
c∗ − y

x− c∗

) ∣∣ r∗o) ∣∣ccc, x, y] ∼ N
(
β

[
γ ln

(
p

1− p

)
+ (1− γ)ln (η)

]
, ν̃2o + β2γ2ν̂2p

)
.

(14)

This results in an empirically estimable equation describing valuations for lotteries (here

described as the density around the indifference value, as typically modelled when esti-

mating valuation data, see e.g. Gonzalez and Wu, 1999; Bruhin, Fehr-Duda and Epper,

2010; L’Haridon and Vieider, 2019).23

Proof. From (12), E
[
r∗o |E

[
ln
(

p
1−p

) ∣∣ rp] ] = γ rp + (1 − γ) ln(η). We next make this

observable step by step. We first condition on the probability response distribution in

(7) to obtain E
[
r∗o |E

[
ln
(

p
1−p

) ∣∣ p] ] = γ ln
(

p
1−p

)
+(1−γ) ln(η), with notation in (14)

simplified by directly conditioning on p. This brings the variance to ν̃2o + γ2ν̂2p . Finally,

we exploit the posterior distribution of the log cost-benefits in (13) and condition on the
23Given the binary choice nature of our choice list tasks, the valuation in (14) may further be noisily

implemented — a step that we do not explicitly model here. If choices are noisily implementation
row-by-row, this will have two key consequences: 1) To the extent that the assessment of the costs
and benefits offered by each row of the choice list is itself noisy, the effect of the multiplier β to the
average probabilistic inference may partially cancel out; 2) the additional noise arising in the row-wise
cost-benefit assessments will result in a further increase of response noise. The key characteristics of the
process, however, remain those modeled in equation 14.
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vector of sure amounts ccc to obtain the expectation in (14). The proof for the variance

proceeds as above and is not repeated here.

Equation (14) produces the key elements distinguishing choice lists from binary choice.

The outcome discriminability or ‘shrinkage’ weight β is now applied to the posterior

of the log-odds (instead of to the true log cost-benefits, as in binary choice), implying

that

1. the discriminability weight attributed to the true log-odds, γ, is now attenuated

in the presence of outcome coding noise, since the log-odds now receive a weight

γ, which in the presence of outcome coding noise is smaller than the weight γ/α

in binary choice – i.e., likelihood insensitivity will the more pronounced in choice

lists than in binary choice;

2. The weight attributed to the prior is now also attenuated, since it is given by

(1− γ), which is smaller than (1−γ)/α in binary choice in the presence of outcome

coding noise (i.e. for α < 1). Any value η will thus be “compressed” towards 1

(any prior mean ln(η) will be compressed towards 0), which in the presence of risk

aversion in the prior (captured by η < 1) implies an increase in risk taking under

choice lists relative to binary choice (a decrease in risk taking in the presence of an

optimistic prior for losses);

3. Given that ν̃o > ν̂o and that outcome noise enters the expression twice, we can see

that the coding noise at the indifference point will be larger than the coding noise

for log cost-benefits in binary binary choice. This, jointly with errors arising mainly

at the list level, implies that between-task consistency will be lower in choice lists

compared to binary choice.

D Experimental materials

For each specific experiment survey, please refer:

• Experiment I

– choice lists and binary choice - Gains

– choice lists and binary choice - Losses

79

https://febugent.eu.qualtrics.com/jfe/form/SV_dm6o0lk8Lq9EU1U
https://febugent.eu.qualtrics.com/jfe/form/SV_9AoRV2pjdS5pQ3A


• Experiment II

– Benchmark-choice lists and Benchmark-binary choice

– Treatment-Sequential
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Below we show the experiment materials of Experiment I with the condition - BCs in

gains - as an example.

[Page 1: Attention Pledge]
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[Page 2: Video Playing]

[Page 3: Comprehension Check]
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