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Abstract

Pronounced discounting of future rewards has been explained by either prefer-
ences or a variety of psychological motives, ranging from the ‘miseries of self-denial’
to difficulties imagining future utilities. Here, I depart from these traditional ex-
planations by modelling reward discounting as noisy perception of time delays
between a smaller-sooner and a larger-later reward. The model resolves a long-
standing puzzle in economics—why substantial discounting is routinely observed
in experiments using monetary payoffs instead of consumption. The model predicts
discounting to be stationary except when the sooner outcome is truly immediate,
in which case it predicts present-bias. The level of patience that is observed, how-
ever, is predicted to systematically depend on the length of the time delays used to
measure discounting. The model builds on the intuition that people react to the
complexities of the choice situation by quickly and approximately trading off time
delays against relative rewards. Three experiments provide support for the stylized
behavioural patterns predicted by the model. Denominating equivalent delays in
days rather than weeks substantially increases impatience. Providing a visual aid
that focuses attention on time delays reduces present-bias. These findings cannot
be organized based on either psychological or preference-based explanations of dis-
counting, which treat time as objective. They are, however, predicted by the noisy
numerical comparison framework underlying the model I present.
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1 Motivation

Humans as well as animals have long been known to substantially discount future

rewards. To use an example from experiment I, an outcome received 6 weeks

from now is considered only as good as 86% of that same outcome in the present

(see point A in figure 1). This implies an annualized discount rate in excess of

300% assuming continuous compounding. Such pronounced discounting of future

rewards has been explained either by preferences, or attributed to a variety of

psychological motives. Such psychological motives include the ‘misery of delayed

gratification’, visceral forces, and difficulties imagining future utilities, among oth-

ers (see Frederick, Loewenstein and O’Donoghue, 2002, sec. 2, for a review).

Figure 1: Nonparametric discount functions based on different time delays
Patterns shown are based on an incentivized classroom experiment with 175 students, using tradeoffs between
smaller-sooner and larger-later rewards (see section 3). The figure shows discount functions obtained based on
different types of choice stimuli. The function labelled ‘delays from present’ uses delays of 6, 12 and 24 weeks
from the present. The ‘6 week delays’ function is obtained by using delays of 6 weeks from the present, 6 weeks
from 6 weeks, 6 weeks from 12 weeks, and 6 weeks from 18 weeks, so that the discount factor for a 12-week delay,
δ12, is calculated as δ12 = δ0,6 × δ6,12, where the subscripts indicate the sooner and later time delays attached to
the smaller and larger payoffs, respectively. Following the same procedure, we obtain δ18 = δ0,6 × δ6,12 × δ12,18
, and δ24 = δ0,6 × δ6,12 × δ12,18 × δ18,24.

These explanations, however, leave some central issues unaddressed. Mod-

els enshrining the motives mentioned above explain discounting for consumption.
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Point A in figure 1, however, has been obtained with an experiment using mon-

etary payoffs. Substantial discounting for money is puzzling from an economic

point of view, since one would need to assume immediate consumption of any

monetary payouts to explain it (Cubitt and Read, 2007; Cohen, Ericson, Laib-

son and White, 2020).1 This important puzzle remains unaddressed, with most

experiments on time discounting using monetary payoffs instead of consumption.

Here, I present a model of delay discounting based on the premise that people

infer the true time delays between payouts from noisy signals by optimal com-

bination with a Bayesian prior. While the information aggregation process is

optimal, noise arising from the quick and approximate comparison of time delays

and relative payoffs implies that the inferred time delays will be systematically

distorted. The noisiness of the process derives from limited attention being paid

to the time dimension in quick comparative assessments of smaller-sooner versus

larger-later rewards. Since the distortion affects the perception of time delays, the

model explains pronounced discounting for money.2 Principles of computational

efficiency inspired by neuroscience furthermore result in a prediction of present-

bias, which is thus based on a distinct mechanism. As a given delay between the

sooner and later reward is pushed farther into the future, however, the model pre-

dicts stationary behaviour. In this sense, the model provides micro-foundations

for quasi-hyperbolic discounting (Laibson, 1997; Imai, Rutter and Camerer, 2021).

At the same time, the model predicts that the measured discount rate will sys-

tematically depend on the length of the delay used to measure it—a phenomenon

I call delay-dependence. This happens because distortions will apply to delays

between different rewards. The same mechanism generating the iconic hyperbolic

pattern in delays from the present and leading up to point B in figure 1, which has
1In particular, discounting measured from monetary payoffs can in general only be used

to infer discounting for consumption when discount rates fall between the market borrowing
and lending rates. Cubitt and Read (2007) show that for discount rates exceeding the market
borrowing rate—as is clearly the case for point A in the figure—no inferences can be drawn
on time preferences at all if one assumes agents to abide by standard principles of economic
rationality. Discounting for money could, however, arise from the fundamental uncertainty of
the future (Halevy, 2008; Chakraborty, Halevy and Saito, 2020; Epper and Fehr-Duda, 2023)—a
point to which I will return below.

2Note that this does not imply that discounting must be the same for money and consumption,
since additional patterns may emerge from outcome-distortions.
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been obtained based on a 24-week delay from the present, thus also generates the

delay-dependence leading up to point C, which has been obtained by multiplying

the discount factors of subsequent 6-week delays from the present, from 6 weeks,

from 12 weeks, and from 18 weeks.3 The coexistence of these two discounting

patterns cannot be organized by any of the standard discounting models, which

predict the same patterns for the two types of measures. This holds for an ex-

ponentially decreasing discount function such as postulated in Paul Samuelson’s

(1937) discounted utility model, as well as for all functions from the hyperbolic

family that have been proposed to account for the pattern leading up to point

B, and for models emphasizing effects of the inherent uncertainty of the future

(Halevy, 2008; Chakraborty et al., 2020; Epper and Fehr-Duda, 2023).4

I test the model in three experiments. Experiment I presents binary trade-

offs between smaller-sooner and larger-later rewards received with different time

delays—the standard measurement paradigm in investigations of time discount-

ing.5 The results indicate the importance of present-bias and delay-dependence.

I find no support for strongly decreasing impatience, which is not predicted by

the model.6 Predictive model tests based on cross-validation indicate that the

noisy coding of time (NCT ) model outperforms exponential discounting, as well
3At an annualized rate of close to 100% calculated from point B based on continuous com-

pounding, it remains clearly beyond the range that would be compatible with discounting for
money under standard explanations of discounting. The annualized rate obtained from point C,
on the other hand, is close to the rate of 300% per annum obtained based on point A. Differ-
ences between the functions could, in principle, emerge based on implementation errors. The
differences shown in figure 1 are, however, both too systematic and too substantial to derive
from the typical ‘white noise’ attached to the deterministic decision models. I will discuss more
sophisticated error models below.

4Read (2001), who first documented delay-dependence in discounting, makes the point that
discount functions from the general hyperbolic family, such as Mazur’s (1987) proportional dis-
counting and Loewenstein and Prelec’s (1992) hyperbolic discounting, were devised mainly to
fit earlier evidence that was based purely on discounting measured by means of different delay
lengths from the present. Several subsequent papers have used the same type of delays of varying
length from the present (e.g., Ebert and Prelec, 2007; Zauberman, Kim, Malkoc and Bettman,
2009).

5Such tradeoffs are often collected into choice lists in applications, which nudge respondents
towards indicating a present equivalent for delayed rewards. Here, I will use purely binary choice
tasks, both because of their simplicity, and because of their consistency with the model I propose.

6Following Prelec (2004), I define strongly decreasing impatience as (y, τs) ∼ (x, τℓ) → (y, ψ+
τs) ≺ (x, ψ + τℓ), where ψ, τs, τℓ are nonnegative time delays, τs < τℓ , and x > y are monetary
outcomes. I define present-bias where the equivalent condition only holds when when the sooner
outcome obtains immediately, i.e. τs = 0.
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as a large set of non-exponential discount functions plus additive noise used in the

literature.

Experiment II tests a core prediction of the model—that time distortions are

driven by the underlying numerical quantities, rather than by any inherently

chronometric properties of time delays. Subjects are randomly assigned to see

identical time delays denominated either in weeks or in days. Preference-based ex-

planations of reward discounting predict no difference between the two conditions.

The same holds true for explanations based on mechanisms such as ‘self-control

problems’, ‘visceral influences’, ‘miseries arising from delayed gratification’, or

difficulties in imagining future utilities, all of which model discounting for con-

sumption and treat time delays as objectively perceived. Accounts of decreasing

impatience based on the fundamental uncertainty of the future do also not predict

any difference in this case, since they model the inherent properties of time while

incorporating concerns about (contract) survival. The noisy coding of time model,

however, predicts systematic differences based on the underlying numerical mag-

nitudes. The reason for this lies in the observation that quick tradeoffs become

more difficult and hence imprecise when delays are described in days rather than

weeks. The experiment indeed shows sizeable differences in impatience depending

on whether time delays are expressed in days or weeks in a way that is consistent

with the model predictions.

Experiment III proposes a representational manipulation of time delays that

uses a visual aid under the form of arrows with length proportional to the time

delay. While making comparisons of time delays easier, thus implementing an op-

posite manipulation of the one in experiment II, experiment III aims specifically

at increasing attention to the time dimension. This serves to test the idea that the

mechanism generating present-bias, although conceptually distinct from the noisy

perception mechanism manipulated in experiment II, is itself also driven by a lack

of attention to the time dimension. The results indicate a decrease in noisiness,

which results in the opposite effect of the one documented in experiment II. Con-

comitantly, present-bias is reduced considerably, which supports the attentional

5



interpretation underlying the parameter capturing present-bias in the model.

The NCT model I present rest on a dual approach to the model of Gabaix

and Laibson (2017). The latter model a perfectly patient Bayesian decision-maker

who produces noisy simulations of future utilities. If the simulation noise increases

linearly with the time delay to the consumption outcome, the combination with a

zero-mean prior results in a proportional discount function as proposed by Mazur

(1987). The model of Gabaix and Laibson (2017) thus builds microfoundations for

explanations of discounting based on difficulties imagining future utilities. Time

delays, on the other hand, are perceived objectively according to the model. In

contrast, the NCT model rests on the noisy perception of time delays. Given

the difference in setup and predictions, and the similarity in formalism, the two

models can be thought of as complementing each other.7

Formally, the model shares a common underpinning with several recent pa-

pers modelling the effect of noisy, but otherwise optimal, cognitive processes in

complex choice environments (Natenzon, 2019; Khaw, Li and Woodford, 2021;

Vieider, 2021). It also shares a common intuition with evolutionary explanations

of decision-making (Robson, 2001; Netzer, 2009; Netzer, Robson, Steiner and Ko-

courek, 2021). The NCT model builds on the idea that the tradeoffs between

the multiple quantities involved in choices between smaller-sooner and larger-later

options trigger approximate comparison strategies that may introduce systematic

bias into the decision process. This intuition has affinities with recent contribu-

tions that have showcased the importance of ‘cognitive uncertainty’ (Enke and

Graeber, 2019). The intuition of noisy cognition in complex decision situations

is furthermore consistent with experiments that have documented how patterns

that had been attributed to risk attitudes may in reality be triggered by the com-

plexity of the choice situation (Oprea, 2022). Implementing a design imitating the

complexities of intertemporal tradeoffs in an atemporal setting, Enke, Graeber
7For instance, the NCT model does not predict strongly decreasing impatience, in the sense of

impatience decreasing for identical time delays as they are pushed farther into the future. While
the experiments in this paper do no support strongly decreasing impatience, this may change
when outcomes are consumption goods and when delays become very long, being measured e.g.
on a time scale of years instead of weeks or months. In such cases, a combination of the two
models may be desirable, which is straightforward given the models’ technical similaries.
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and Oprea (2023) have documented results that closely resemble what one may

consider ‘typical discounting patterns’. The modelling approach I take in this pa-

per captures precisely this intuition, whereby choice patterns are driven by quick

comparisons in complex tradeoffs, rather than anything inherently chronometric.

This paper proceeds as follows. Section 2 introduces the model. Section 3

describes experiment I, and section 4 presents experiment II, with section 5 pre-

senting experiment III. Section 6 provides a discussion of the results and concludes

the paper.

2 The noisy coding of time model

Modelling preliminaries

I model the condition under which a decision-maker chooses a larger-later reward

x, paid at time τℓ, over a smaller-sooner amount y, paid at time τs. I start from a

choice rule devoid of subjective parameters8, under which the larger-later amount

will be chosen whenever

e−(τℓ−τs) >
y

x
. (1)

This choice rule emphasizes the tradeoff of the time delay between the two rewards

against their relative size. It is optimal inasmuch as discounting is stationary,

resulting in consistent choice patterns over time. The substantial discounting

of 100% per time unit reflects the fundamental intuition underlying the model

that patience—and perhaps the the very meaning of time—needs to be learned

from experience. This take is consistent with extremely pronounced discounting

observed in children (Mischel and Ebbesen, 1970; Mischel, Shoda and Rodriguez,

1989; Bettinger and Slonim, 2007), and with the emphasis put on education in

economic models endogenizing discounting (Doepke and Zilibotti, 2014; 2017).

The central idea underlying the model is that choice quantities are not per-

ceived directly, but are encoded by a signal that needs to efficiently represent these
8Note that this choice rule is used without loss of generality. Augmenting the choice rule

by a normatively low discount rate or by a concave utility function does not affect any of the
conclusions derived below. I thus focus on a minimalistic setup deprived of any further motives.
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quantities in a way suitable for neural calculations. I will thus assume that the

choice rule in (1) is logged twice, and that the objective time delay t ≜ τℓ − τs is

replaced by the posterior inference on the time delay drawn from a signal r:

E [ln(t) | r] < ln
(
−ln

(y
x

))
, (2)

where I treat rewards as being perceived objectively and without distortion for

simplicity (including noisy inferences on outcome ratios does not affect the con-

clusions drawn from the model—see online appendix C for a generalization to

include outcome distortions). The double-logging of the choice rule serves to put

it on the scale of the neural computations, which are supposed to take place on a

logarithmic scale. This adds neuro-biological realism, since it puts all subsequent

computations on a linear scale. The conclusions below, however, do not depend

on this assumption, and deriving the model on the scale of the choice rule in (1)

results in model predictions that are empirically indistinguishable from the ones

derived below—see online appendix B for such an alternative derivation.

The choice rule above assumes that the signal r encodes the time delay between

two rewards. This captures the intuition of noise arising from the approximate

comparisons of the time delays attached to the rewards being traded off against

the ratio of the rewards themselves. Expressing the signal r on the logarithmic

scale serves to avoid an unbounded increase in the cognitive resources needed for

the representation of larger numbers (Dehaene and Changeux, 1993; Dayan and

Abbott, 2001; Dehaene, 2003). Gold and Shadlen (2001) showcase the neural ad-

vantages of logarithmic coding in a comparative setting. Howard and Shankar

(2018) have shown theoretically that logarithmic compression is optimal for adap-

tation to diverse environments. This conclusion is general, and holds independently

from the statistical distribution of stimuli in the environment.9

Given limits on neuronal resources, as well as limits imposed by the precision

with which such a signal can be optimally decoded (Dayan and Abbott, 2001,
9Behaviourally, Zauberman et al. (2009) have shown that the dependence of subjectively

perceived delays on objective delays from the present may be best fit by a logarithmic function.
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chapter 3), the mental signal will typically be noisy. Noise will be especially rel-

evant when comparisons and tradeoffs between multiple dimensions in complex

choice situations are made quickly and intuitively, rather than being based on

precise calculations (Whalen, Gallistel and Gelman, 1999). Lim, O’Doherty and

Rangel (2011) show that in such comparative settings neuronal activity correlates

with the value difference between items being compared, thus providing direct

physiological evidence for comparative coding. The model presented below explic-

itly builds on the idea that in complex choice situations quantities relevant to the

decision will often be gauged approximately, potentially yielding systematic biases

in the assessments of the choice quantities.

Logarithmic representation of time delays incurs into issues when a time delay

τ becomes small. Since limτ→0 ln(τ) = −∞, the resources needed to represent

small delays would increase unboundedly, thus contradicting the very resource-

saving rationale underlying the logarithmic representation. Howard and Shankar

(2018) argue that this resource-saving rationale dictates that a number κ be added

to the objective quantity. I will thus substitute s ≜ κ+ τs if τs > 0 and ℓ ≜ κ+ τℓ

for the objective time delays to model mental representations of the objective

delays in order to prevent the numerical representation to become boundless as

τs → 0. While this transformation is inconsequential for τs > 0, since the additive

κ will drop out of the time delay, i.e. ℓ − s = τℓ − τs, it will have interesting

implications for τs ≡ 0 and when time delays τℓ are small. This may be best

thought of as an arbitrary numerical fix to a computational problem that is itself

subject to adjustment whenever the importance of the situation warrants this. In

this sense, κ may arise from inattention to some aspects of the decision problem

when decisions are taken quickly and tradeoffs are gauged approximately.

Bayesian inference on time delays

Below, I formalize how signals are encoded and decoded to arrive at posterior

inferences on the delay that triggered the signal. For simplicity, I treat rewards

as being perceived objectively and without distortion. Allowing for the noisy
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distortion of outcomes reinforces the intuition of noise arising from quick and ap-

proximate tradeoffs, but does not otherwise affect the conclusions drawn from the

model (see online appendix C for a generalization to include outcome distortions).

I model the mental signal as a single draw from the following distribution:

r ∼ N ( ln(t) , ν2 ), (3)

where the parameter ν quantifies coding noise, and is assumed to be locally in-

dependent of t.10 Physiological evidence directly suggests the use of a normal

distribution (Nieder and Miller, 2003; Dehaene, 2003). The normal distribution is

furthermore plausible because of its analytical advantages for the mind, allowing

for the derivation of a precise posterior based on only 3 quantities to be stored in

memory. More general, non-conjugate functions, on the other hand, would require

thousands of points to obtain an accurate approximation of the posterior.11

The information contained in the signal r needs to be decoded to make infer-

ences about the outside stimulus that has generated the signal. To do this, the

mind builds generative models of the world, enshrined in probabilistic prior dis-

tributions learned over time, which enable causal inference about the underlying

triggers of the signals. This noisy signal r is subsequently decoded by combination

with a prior indicating the probability of different time delays in the environment.

Such a process is indeed optimal given the noise contained in the signal, thus re-

ducing error. I will assume a conjugate prior distribution from the normal family:

ln(t) ∼ N (µ , σ2 ). (4)

The log-normal form of the prior enshrines the observation that most delays one
10Local independence as defined here implies that the coding noise does not change with the

time delays used. Note that this assumption is only expected to hold locally, in the sense that
one should not expect it to hold when transitioning between different orders of magnitude, or
indeed for different numerical representations of identical time delays.

11It is worth noting that the central results do not hinge on the normality assumption. Show-
casing the efficiency of logarithmic coding in neural representations, Gold and Shadlen (2001)
showed how the posterior inferences obtained based on the normal setup hold for a wide class of
symmetric and asymmetric distributions.
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faces are short while some are very long, and naturally reflects the non-negative

nature of time delays. The conjugate form to the normal likelihood further has

important analytical advantages, and allows to quickly access the posterior.

Combining the likelihood in equation 3 with the prior in equation 4 by Bayesian

updating (see online appendix A for details), we obtain the posterior inference on

the time delay that is expected to have caused the signal:

E[t | r] = βr + ln(α), (5)

where α ≜ exp ( (1− β)× µ ), and the Bayesian shrinkage weight β ≜ σ2

σ2+ν2
gov-

erns the degree of regression of the posterior mean to the mean of the mental

prior, µ. Unexpected, noisy signals falling far from the mean of the prior will thus

be discounted more heavily than expected signals characterized by high precision.

For values of β < 1, any noisy signal will be shrunk towards the prior mean µ, with

the direction of the shrinkage determined by whether r is smaller or larger than µ.

Intuitively, signals smaller than the mean will thus be increased, suggesting time

delays that are longer than they actually are, and thus leading to increased im-

patience. Signals larger than the prior mean, on the other hand, will be reduced,

thus suggesting time delays that are shorter than the objective delay, and thus

increased patience. Whether an individual is relatively patient or impatient for a

given delay will thus depend on the interplay between β and α.

The stochastic choice rule

The posterior expectation of the time delay can now be used to inform decisions.

Substituting the posterior expectation in (5) into the mental choice rule in (2) and

rearranging yields a threshold equation capturing the conditions under which the

larger-later reward will be chosen over the smaller-sooner reward:

r < β−1
[
ln
(
−ln

(y
x

))
− ln(α)

]
. (6)
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This threshold equation fully describes the condition under which the larger-later

amount will be chosen. It shows how the signal about the time delay is traded off

against the reward ratio, which in turn is transformed by the subjective parameters

emerging from the Bayesian updating process.

To result in testable predictions we need to obtain a choice rule devoid of the

mental signal r, which is unknown to external observers. Obtaining the z-score

for r from the likelihood in (3) and comparing it to the z-score of the threshold

equation (see online appendix A for details), we obtain the following probabilistic

choice rule:

Pr[(x, τ) ≻ (y, 0)] = Φ

(
ln
[
−ln

(
y
x

)]
− [ln(α) + β ln(t)]

β ν

)
, (7)

where Pr[(x, τ) ≻ (y, 0)] represents the probability of the larger-later reward be-

ing chosen, and Φ represents the standard normal distribution. In contrast to

traditional discounting models, which typically combine a deterministic prefer-

ence model with an independently and arbitrarily chosen stochastic choice model

(He, Golman and Bhatia, 2019), the probabilistic setup used to derive the noisy

coding model produces both the choice parameters and the stochastic choice setup,

thus resulting in an inherently stochastic model of inter-temporal choice.

Behavioural implications

When modelling delays from the present, i.e. for τs ≡ 0 and t = ℓ, equation (7)

can be seen as providing stochastic microfoundations for the constant sensitivity

discount function of Ebert and Prelec (2007). This is most easily seen by zooming

in on the equality condition in the numerator of (7) while momentarily ignoring

the stochastic aspect. Defining δℓ ≜
y
x

and exponentiating the expression in the

numerator twice yields the following expression at the point of indifference:

δℓ = exp(−αℓβ). (8)
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Ebert and Prelec (2007) show that α creates a demarcation between the near

and the far future. Discounting for delays shorter than 1
α

will increase in time

insensitivity relative to the exponential benchmark, whereas discounting for delays

longer than 1
α

will decrease. This insight resonates with the interpretation of the

NCT model, whereby α captures regression of time perception to the mean of

the prior. Ebert and Prelec (2007) show experimentally that time sensitivity β

increases when a visual aid for the length of the time delay is provided, and

decreases under time pressure. Both results are perfectly aligned with an account

whereby attention determines the level of coding noise in the NCT model.

The NCT model, however, differs from the constant sensitivity function in

several respects. The definition of the encoded time delay as ℓ ≜ κ + τℓ implies

that the function will show a discontinuous drop in the vicinity of τℓ = 0. That is,

limτℓ→0D(t) = exp(−ακβ), where D(t) indicates the discount function. Assuming

as usual that D(0) = 1, so that immediate payments are not discounted—in the

absence of any delay being indicated, there is no time delay to be encoded—this

introduces a drop in the vicinity of τℓ = 0 which predicts present-bias—a preference

for immediately received rewards over even slightly delayed rewards. Present-

bias is thus captured by the number κ, introduced to fix a numerical overflow

problem which may itself be subject to attentional modulation. This interpretation

is consistent with approaches modelling costly self-denial (Gul and Pesendorfer,

2001). Other than in the constant sensitivity function, time discriminability β is

closely linked to decision error, and the model is inherently stochastic.

Once up-front delays are introduced, the NCT predicts that delays between

the two options are nonlinearly distorted, whereas the constant sensitivity model

predicts transformations of the individual time delays from the present, so that

δτs,τℓ = exp(−α(τβℓ − τβs )). Much like other functions from the non-exponential

family, reviewed in detail in online appendix D, the constant sensitivity function

can thus not account for delay-dependence. The NCT, on the other hand, predicts

that longer delays are compressed more, which implies that impatience systemat-

ically depends on the time delays used to measure it. For a given delay length,
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however, the function is stationary, i.e. it is independent of the value taken by

the up-front delay τs except in the special case where τs = 0. The fact that

this function obtains naturally from an intuitive optimal choice rule may explain

the pervasiveness of delay-dependence (Dohmen, Falk, Huffman and Sunde, 2017;

Enke et al., 2023), given the model’s predictive interpretation. Delay-dependence

is ultimately produced by a lack of attention in approximate judgments. If more

resources are dedicated to the correct perception of time, in the limit as ν → 0

revealed impatience will be independent of the length of the time delays used.

Relation to Gabaix and Laibson (2017)

Gabaix and Laibson (2017) recently proposed a setup that is formally related to

the model presented here. They assume Bayesian agents who are perfectly patient,

but who perceive future utilities with some noise, so that sτ ∼ N (u(xτ ), ξ
2
τ ), where

u(xτ ) is the utility of a reward x received at time τ , and sτ is the noisy simulation

of that utility. This simulation is combined with a prior u(xτ ) ∼ N (µ̂, ζ2). This

yields the posterior expectation E[u(xτ )|sτ ] = µ̂ +D(τ)(sτ − µ̂). Assuming that

the noisiness of the signal increases linearly in the time delay τ , i.e. ξ2τ = ξ2 × τ ,

they obtain D(τ) ≜ ζ2

ζ2+ξ2τ
= 1

1+ ξ2

ζ2
τ
, which takes the form of the proportional

discount function proposed by Mazur (1987), D(τ) = 1
1+γτ

, with γ ≜ ξ2

ζ2
. Note that

while future utilities are subject to noisy simulations, time delays are perceived

objectively. The model thus predicts discounting to be proportional to the time

delay from the present, but does not predict delay-dependence or present-bias. The

model of Gabaix and Laibson (2017) provides micro-foundations for psychological

accounts according to which future utilities are uncertain. The model thus presents

a view that is highly complementary to the one presented here.
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3 Experiment I: Patterns of reward discounting

3.1 Experiment

Bachelor students attending an introductory class in behavioural economics at

Ghent University were invited to take part in a classroom experiment. The stu-

dents had been exposed to the basics of expected utility theory, but had not

covered time discounting yet. Students were told to bring a laptop or tablet to

class to participate in an experiment. They were told that the anonymized aggre-

gate data would be used to illustrate typical aggregate choice patterns for teaching

purposes. They were also told that 10 students would be randomly extracted to

play one of their choices for real money immediately after the experiment. Over-

all, 175 students participated in the experiment and provided a complete set of

responses during the allocated time.

The time delays used in the experiment are depicted in figure 2. They were cho-

sen using simulations to allow for optimal identification of all model components.

Importantly, I chose the stimuli in such a way as to allow for the identification of

patterns predicted by the model—such as present-bias and delay-dependence—as

well as to allow for the identification of patterns not predicted by the model—such

as strongly decreasing impatience. In particular, comparison of AB to BC and of

AC to CE allows for the identification of present-bias. Comparison of AB and BC

with AC, of CD and DE with CE, and of all the 6 week delays (AB, BC , CD ,

DE) and 12 week delays (AC , CE) with the full delay over 24 weeks (AE) allow

for the identification of delay-dependence. Strongly decreasing impatience can be

identified from the comparison of BC, CD, and DE.

The future outcome was fixed at e50. The choice of such a round, invariant

amount was meant to ensure that outcomes are perceived objectively, rather than

being subject to noisy perceptions themselves (see online appendix C for a discus-

sion of robustness to this assumption). The earlier amounts ranged between e33

and e49 inclusive in steps of e1, allowing for discount factors between 0.64 and 1

(discount rates between 0 and 56%) per period. Each screen presented one single
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now 6 weeks 12 weeks 18 weeks 24 weeks

A B C D E

Figure 2: Time horizons used in experiment
Illustration of time delays used in the experiment. The maximum delay, indicated by AE, was 24 weeks. This
delay was divided into 4 different sub-periods of 6 weeks, AB, BC, CD, and DE; and into 2 different sub-
delays of 12 weeks, AC and CE. Comparison of AB to BC and of AC to CE allows for the identification of
present-bias. Comparison of BC to CD and DE, and of the latter two, allow for the identification of strongly
decreasing impatience. Comparison of long delays with their constituent parts allow for the identification of
delay-dependence. Notice that, given 4 delays of 6 weeks, 2 of 12 weeks, and 1 of 24 weeks, the stimuli are
well-fitted by a log-normal distribution.

choice, and the individual choice pairs were presented completely at random. This

design was implemented to fit the discrete binary choice setup modelled. Subjects

made 158 choices, which took about 20 minutes on average. All stimuli were pre-

sented at least once. In addition, 40 randomly selected stimuli were repeated. The

repeated extractions were executed with replacement, so that the same stimulus

may recur a number of times. Identification of decision noise, which plays a central

role in the model, is thus assured by i) repeated observations of the same stimuli;

and ii) monotonicity violations between similar stimuli.

Before the start of the experiment, the lecturer presented the instructions (on-

line appendix G), to make sure that everybody had an understanding of the tasks.

Since the tasks consisted of a binary choice paradigm, the actual explanations of

the tasks were very simple. The lecturer, however, emphasized the procedural

aspects of the payout mechanism. Both immediate and future payouts were made

by bank transfer. Bank transfers between all major Belgian banks are immediate.

This was emphasized in the instructions, and subjects were told that in case of an

immediate payout being extracted to count for real pay, the lecturer would execute
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the payment directly and wait for the money to arrive on the student’s account.

The student would then be asked to verify if the money had arrived and sign a

receipt. In case of a future payment, the lecturer signed a certificate on university

letterhead. The certificate contained the amount to be paid and the date on which

it would be paid, and it was signed by the lecturer. The certificate also contained

the address and telephone number of the lecturer, and students were encouraged

to contact the lecturer in case they changed bank accounts or they had any doubts

about the payment. All time delays were chosen in such a way as to fall within

the same academic year, to keep the costs of approaching the lecturer low, and to

further reassure subjects of the future payment guarantee.

3.2 Results

I start from an examination of the nonparametric evidence for present-bias and

strongly decreasing impatience, shown in figure 3. The figure plots decumulative

choice proportions for the larger-later reward as the sooner-smaller reward in-

creases from e33 through e49. The choice proportions for the 6-week delay from

6 weeks, shown in panel A, are shifted to the north-east of the choice patterns for

the 6 week delay from the present, thus indicating present-bias (p = 0.011, two-

sided Wilcoxon signed-rank test on individual-level choice proportions for the later

option). Results for the 12 week delay from the present versus a 12-week delay

from 12 weeks are very similar, and again indicate an increase in patience following

the introduction of the up-front delay (p ≪ 0.001; figure in online appendix F).

Panel B in figure 3 examines the evidence for strongly decreasing impatience by

showing discounting patterns for 6-week delays from up-front delays of 6, 12, and

18 weeks (i.e., comparing time delays BC , CD, and DE). No systematic differences

in discounting for the different upfront delays are apparent. Statistically, there is

no difference in discounting between a 6-week delay from 6 weeks and a 6-week

delay from 12 weeks (p = 0.393). There is also no difference when comparing a

delay of 6 weeks from 12 weeks to a 6-week delay from 18 weeks (p = 0.182), or

when comparing a 6-week delay from 6 weeks to a 6-week delay from 18 weeks
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Figure 3: Non-parametric illustration of present-bias
Panel A compares a 6-week delay from the present to a 6-week delay from an up-front delay of 6 weeks using
decumulative choice proportions for the larger-later reward as the sooner reward increases. The right panel shows
the decumulative choice proportions for the 6-week delays with upfront delays of 6, 12, and 18 weeks. Panel
A indicates clear evidence for present-bias, with the choice proportions of the later option systematically lower
when the sooner option occurs in the present. Panel B indicates no systematic differences, providing no support
for strongly decreasing impatience. The nonparametric choice proportions are fit with a third degree polynomial.

(p = 0.076). Although this last comparison is marginally significant, it goes in the

opposite direction of the previous comparison, resulting in an overall null result.

To test delay-dependence, I identify a probabilistic non-parametric discount

factor from the sooner amount at which a subject starts choosing the smaller-

sooner reward 50% of the time, divided by the later amount. Figure 4 shows

two examples of delay-dependence. Panel A compares a 12-week delay from the

present (AC) to its two underlying 6-week delays (AB and BC). Delay-dependence

predicts δ0,12 > δ0,6 × δ6,12, where δ is the discount factor and subscripts indicate

time delays in weeks. The great majority of data points falls above the 45◦ line,

indicating delay-dependence. Importantly, this also holds true when we exclude

calculated discount factors δ0,6 × δ6,12 smaller than 0.64, which could otherwise

bias the findings due to censoring effects (p ≪ 0.001).

Panel B shows the patterns for the longest 24-week delay (AE) against the

product of the discount factors for the 2 underlying 12-week periods (AC and

CE). Delay-dependence is now revealed by behavioural patterns indicating that

the discount factor over the whole period is larger than the product of the discount

factors for the different underlying 12-week periods, δ0,24 > δ0,12×δ12,24. This effect

is very pronounced, with virtually all points falling to the north-west of the 45
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Figure 4: Non-parametric illustration of subadditivity
The comparisons are obtained by comparing a discount factor over the whole period with the product of the
discount factors of the subperiods. The pattern in panel A obtains from a comparison of the discount factor δ0,12
with the product of the two discount factors δ0,6 × δ6,12, where the subscripts indicate the extremes of the time
delays. The pattern in panel B obtains from a comparison of the discount factor δ0,24 to the product of the two
underlying 12-week discount factors, δ0,12 × δ12,24. Dashed lines indicate correlations.

degree line. Once again, this effect is highly significant even after accounting

for censoring and excluding individuals for whom the calculated discount factor

from the shorter delays is lower than 0.64 (p ≪ 0.001). Delay-dependence in the

remaining comparisons are similar (see online appendix F).

I next estimate the noisy coding model, and test its predictive performance

against different standard models augmented by a normally distributed, additive

error term, as most commonly used in the literature. I use cross validation to

test predictive performance, so that models with more parameters get penalized

compared to simple models with fewer parameters. The point here is not to

see whether the NCT model outperforms every other model, combined with any

possible stochastic choice model, which would yield a staggering variety of com-

binations (see Regenwetter, Cavagnaro, Popova, Guo, Zwilling, Lim and Stevens,

2018, for a review). The point is rather to see whether the specific predictions of

the model and the interaction between the parameters may give it an edge in terms

of predictive performance when compared to other, ‘typical’ implementations.

Table 1 shows the test results, together with the estimated parameters. It also

shows the discount functions corresponding to the different models—see online

appendix D for a more detailed discussion and a literature review. The noisy cod-
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Table 1: Mean parameter estimates and predictive performance test

model discount par. distortion par. noise ELPD diff.

noisy coding of time 0.028 0.657 1.010 0
eq. 7 (0.001) (0.018) (0.013) −

subadditive discounting 0.046 0.596 0.124 −73.3
D(τs, τℓ) = 1/1+ζ(τℓ−τs)γ (0.002) (0.016) (0.001) (32.2)

quasi-hyperbolic discounting 0.012 0.950 0.152 −288.5
D(τ) = β × exp(−ρτ) (0.000) (0.003) (0.002) (36.1)

constant sensitivity discounting 0.030 0.763 0.152 −289.2

D(τ) = exp(−α̂τ β̂) (0.001) (0.014) (0.002) (36.7)

hyperbolic discounting 0.021 0.049 0.152 −299.2

D(τ) = (1/1+ζτ)
ξ
ζ 0.001 (0.005) (0.002) (37.3)

as-soon-as-possible discounting 0.016 − 0.146 −301.8
D(τs, τℓ) = 1/1+ζ(τℓ−τs) (0.000) − (0.002) (36.6)

proportional discounting − 0.017 0.152 −330.2
D(τ) = 1/1+ζτ − (0.000) (0.002) (37.5)

exponential discounting 0.014 − 0.154 −404.2
D(τ) = exp(−ρτ) (0.000) − (0.002) (38.5)

The parameters and standard errors (in parentheses) have been obtained in aggregate-level Bayesian esti-
mations using an additive, normally distributed error term. The ELPD difference refers to the expected log
pointwise predictive density difference, and measures the predictive performance of a model relative to the best-
performing model measured by leave-one-out cross-validation (Vehtari, Gelman and Gabry, 2017). The ELPD
difference constitutes a Bayesian generalization of the deviance information criterion. Results are virtually
identical if I base the model tests on the Watanabe-Aikake Information criterion (WAIC) instead. Negative
values indicate lower performance. The functional forms underlying the various models, and a review of their
use in the literature, are include in online appendix D. The subjective parameter added to objective time
delays is estimated at κβ = 2.71 (standard error: 0.14).

ing model easily outperforms the exponential model. The NCT model also clearly

outperforms the hyperbolic-class models (including proportional and hyperbolic

discounting, as well as quasi-hyperbolic discounting, and the constant sensitivity

model). The function coming closest in performance is Read’s (2001) subadditive

discount function. As-soon-as-possible discounting (Kable and Glimcher, 2010),

which models delay-dependence for delays of different lengths from any upfront

delay (see appendix D for details), performs less well.
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4 Experiment II: Delays in days versus weeks

4.1 Experiment

Experiment I provided a proof of concept for the predictions of the NCT model.

In particular, I showed that i) the empirical data line up with the stylized pat-

terns predicted by the NCT model; and ii) the model outperforms a large set of

standard discount functions used in the literature in predictive fit. Experiment II

aims to directly test the approximate comparison explanation of time discounting

underpinning the NCT model. Subjects were randomly allocated to identical time

delays described either in weeks or in days. That is, a 12-week delay was presented

in the days treatment as a delay of 84 days. If the observed patterns are due to

either preferences or motives such as self-control issues or difficulties imagining

future utilities or needs, the representation of time delays in either days or weeks

should make no difference. We also would not expect any differences based on

the inherent uncertainty of the future, which remains identical across treatments.

The same holds true for the model of Gabaix and Laibson (2017), given that in

the latter time is perceived objectively.12

The NCT model, on the other hand, predicts systematic differences when iden-

tical delays are expressed either in days or in weeks due to the difference in nu-

merical magnitudes. In particular, expressing time delays in days rather than

weeks is expected to increase coding noise by making quick comparisons more dif-

ficult. Since the prior variance is learned from the noisy signals about the outside

world, one should furthermore expect such larger coding noise to translate into

an increase in the prior variance.13 Given that both coding noise and the prior
12Error models do not make any predictions about systematic effects either. It is of course

conceivable that the magnitude of the error could depend on the scale on which time delays
are expressed. Note, however, that models such as proposed by Lu and Saito (2018) and He
et al. (2019) would then predict differences in decreasing impatience—a prediction that is quite
distinct from those emerging from the NCT model.

13Assume that subjects learn the stimuli of the environment from noisy signals. If the noisiness
of the signals will be impacted, this ought to result in an increase of the variance, given that the
shape parameter of the conjugate Normal-Gamma prior will be augmented with two parts—one
given by the difference in posterior inference from the prior mean, and one given by the residual
noise. See Vieider (2023) for a formalization of such a learning model.
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variance are predicted to increase, the effect on discriminability will be ambigu-

ous, since it depends on the relative increase in coding noise and variance. One

should, however, expect an increase in the impatience parameter α when delays

are expressed in days rather than weeks. This is predicted to happen because

increased coding noise will directly impact learning of the prior mean, with noisy

signals of large delays leading to an upward distortion of the mean. An interesting

question further concerns the effects on present-bias. If the value of κ is expressed

in the units of the time delays, then we would expect less present-bias in the days

condition. If the value of κ is driven by inattention, as discussed above, then we

should not expect any systematic effects.14

I ran the experiment on Prolific UK, with a sample size of 300. Subjects were

paid a fixed fee for their time, and made hypothetical choices between options like

the ones in experiment I. There is no evidence that using hypothetical instead of

real choices impacts observed discounting behaviour (Cohen et al., 2020). The

stimuli closely resemble those used in experiment I, except for i) the already-

mentioned treatment variation between weeks and days, which was implemented

between subjects; ii) that all time delays were doubled (i.e., the shortest delay

was 12 weeks, while the longest delay was 48 weeks); and iii) the list of sooner

amounts was extended down to £25, to have more room to detect impatience.15

4.2 Results

Figure 5 compares the nonparametric discount functions across the two treatment

conditions, with panel A showing the functions based on delays from the present,

and panel B showing the functions based on the four 12-week delays. In both

cases, the discount function in the days conditions stays clearly below the discount
14A pre-analysis plan for the experiment discussing these hypotheses was registered at the

Open Science Foundation under number osf.io/3cjy7 prior to running the experiment. The
predictions and analysis below closely track this pre-analysis plan, unless stated otherwise.

15In order to avoid that the experiment got too long, each subject was only shown 158 randomly
selected choices from the total to keep the experiment of identical length as experiment I. The
exact choices being shown were randomly extracted at the individual level, so that the results
reported below are unaffected by this. Simulations showed that such a design could yield superior
results compared to the choices used in experiment I in hierarchical estimations in the presence
of very impatient individuals.
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function in the weeks condition (the difference for the function based on the two

24-week delays, which is not shown, is similar). This difference is indeed sizeable.

Figure 5: Discount funcions for days versus weeks
Nonparametric discount functions when time delays are expressed in weeks versus days. Panel A shows the
functions based on delays of different lengths from the present. Panel B shows the functions calculated based
on the four underlying 12-week delays from different points. Panel C shows discount functions obtained from
different time delays in the weeks condition, whereas panel D shows the same type of functions for the days
condition.

Panel C further shows the comparison of different discount functions for the

weeks condition, and panel D shows the same comparison for the days condi-

tion. The stylized patterns predicted by the NCT model are the same across

conditions, and correspond closely to those documented in experiment I. In par-

ticular, there is again clear evidence for present-bias in both the days and weeks

condition, substantial delay-dependence in both conditions, and no evidence for

strongly decreasing impatience in either condition (see online appendix H for ad-

ditional graphs). The differences between the different functions obtained based

on different delays, however, appears more pronounced in the days condition.

I next proceed to estimating the NCT model parameters. Figure 6 compares

the estimates obtained from a Bayesian random-parameter model by treatment

23



98.6% > 0

0

1

2

3

4

0.0 0.2 0.4
coding noise (difference in means)

de
ns

ity
A

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
coding noise (individual−level estimates)

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

days

weeks

B

99.9% > 0

0

1

2

3

4

0.0 0.2 0.4 0.6
prior SD (difference in means)

de
ns

ity

C

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
prior SD (individual−level estimates)

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

days

weeks

D

99.7% > 0

0

20

40

0.00 0.01 0.02 0.03 0.04
impatience (difference in means)

de
ns

ity

E

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
impatience (individual−level estimates)

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

days

weeks

F

Figure 6: Density plots of NCT parameters ν, σ, and α, days versus weeks
NCT model parameters ν, σ, and α for days versus weeks. Panel A shows the difference in mean estimates of
the coding parameters, as νdays − νweeks, and indicates a significantly larger mean in the days condition. Panel
B shows the cumulative distribution of individual-level parameter estimates of the coding noise. Panel C shows
the difference in means of the prior SD, σdays − σweeks, which is again significantly larger in the days condition.
Panel D shows the cumulative distribution of individual-level parameters. Panel E shows the difference in the
posterior draws describing the means of the impatience parameter α, αdays − αweeks, which again supports the
initial hypothesis. Panel F shows the cumulative distribution of individual-level impatience parameters.

condition (see online appendix E for a description of the econometrics).16 Panel A

shows the difference in the posterior draws for the mean coding noise parameter, ν.

98.6% of the posterior probability mass indicates that the average coding noise is

larger in the days condition compared to the weeks condition. The individual-level
16The hyperpriors were chosen to be mildly regularizing, and changing the priors does not

affect the results in any way. Importantly, I used hyperpriors that are identical across treatment
conditions, so that they could not possibly bias the results.
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estimates, shown in panel B, paint a similar picture. The cumulative distribution

of coding noise parameters for days is clearly shifted to the right relative to the

distribution for weeks, a difference that is significant according to a Wilcoxon

ranksum test on the individual-level parameter estimates (p < 0.001).

A similar effect occurs for the standard deviation of the prior, σ, which is

larger for days than weeks both based on the difference in posterior draws of the

mean (panel C; 99.9% of the probability mass of the difference is positive), and

according to a ranksum test of individual-level parameters (panel D; p = 0.001).

These results thus coincide with the predicted effects. Finally, panel E shows the

difference in posterior draws of the mean impatience parameter, α. Once again,

the draws for days significantly exceed those for weeks, with a probability mass

of 99.7% in favour of the hypothesized effect. Panel F shows the difference in

individual-level parameters. The cumulative distribution for the days condition

stays consistently below the one for the weeks condition, an effect that is again

significant according to a ranksum test on the estimated parameters (p = 0.013).

This difference is indeed what drives the difference in nonparametric discount

functions shown in figure 5.

As a next step, we can examine the model parameters β and κ, for which the

predictions were more ambivalent. Figure 7 indicates the effects for discriminabil-

ity β and for κ. Discriminability increases somewhat. However, only 76.7% of

the probability mass of the difference in posterior draws indicates a value that is

larger for days than for weeks (panel A), thus falling short of conventional levels

used to indicate statistical significance. A similar picture emerges from a test on

the individual-level estimates (p = 0.374; panel B). We also observe no differences

for κ in the aggregate test shown in panel C. A similar conclusion follows from

a test on the individual-level parameters shown in panel D (p = 0.102 ).17 It

thus appears that κ is not expressed on the scale of the delays displayed in the

experiment, suggesting instead that κ may be driven by variations in attention.
17One may argue that the variable of import in this case is not κ, but rather κβ . Given that

β does also not change significantly between treatments, however, tests based on this derived
variable yield similar results.
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Figure 7: Density plots of NCT parameters β and κ, days versus weeks
NCT model parameters β and κ for days versus weeks. Panel A plots the difference in posterior draws of
the discriminability parameters between conditions,βdays − βweeks, and shows 76.7% of the probability mass
in favour of the parameter being larger for days. Panel B plots the cumulative distributions of individual-level
discriminability parameters. Panel C plots the difference of the posterior draws for the mean for κ, κdays−κweeks.
Only 41.8% of the probability mass indicates a parameter that is smaller in the days condition. Panel D draws
the cumulative distribution of the individual-level κ parameters by treatment condition.

5 Experiment III: Visual Aid for Time Delays

5.1 Experiment

Experiment II showed that making quick comparisons more difficult by expressing

time delays in days rather than weeks impacted coding noise, the prior variance,

and impatience. Present-bias, however, was unaffected by the manipulation of the

unit in which the time delay was expressed. Experiment III aims to directly test

the attentional interpretation I proposed of the model. In particular, I randomize

whether subjects see time delays in weeks described by means of textual statements

like in experiments I and II, or whether they are given a visual aid representing

time delays by arrows with length proportional to the delays themselves. This
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manipulation is meant to specifically focusing attention onto the time dimension.18

The visual aid is shown in figure 8. In the control or textual condition, time delays

are described verbally, as done previously. In the visual condition, time delays

are depicted by means of arrows which are proportional in length to the time

delay between now and the moment the reward is paid out. I ran the experiment

with 301 subjects on Prolific using the stimuli of experiment I.19 Choices were

hypothetical like in experiment II. I excluded 3 subjects from the analysis who

constitute extreme outliers caused by largely random response patterns. Keeping

these subjects does not substantially affect the conclusions drawn below.

(a) Textual condition

(b) Visual condition

Figure 8: Choise situation for textual and visual condition
Panel 8(a) shows a choice situation in the textual condition. Panel 8(b) shows the equivalent choice situation in
the visual condition. Subjects could indicate their choice by clicking on their preferred option, and subsequently
moving on the the following screen.

A key prediction is that the visual aid for time will decrease coding noise, de-

livering an inverse manipulation to the one shown in experiment II. Importantly,

however, by focusing attention on the time dimension, the visual aid manipulation
18Ebert and Prelec (2007) also propose a manipulation using a visual aid. Their exclusive

focus on constant sensitivity discounting in delays from the present, however, means that they
cannot disentangle the different motives we are interested in here. In particular, they cannot
disentangle strongly decreasing impatience from delay-dependence and present-bias.

19Using the stimuli of experiment I instead of experiment II allowed me to have the sooner
amounts vary between 33 and 49, and to present all binary tradeooffs to all subjects, since these
ranges are sufficient to measure the discoutning for the shorter time delays.
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is predicted to also decrease present-bias. This prediction arises from the obser-

vation that the visual aid does not only simplify the approximate appraisal and

comparison of time delays, but that it also impacts attention paid to the time

delays themselves. If the attentional interpretation of κ given above is warranted,

we should thus expect to see a decrease in present-bias. Predictions on other pa-

rameters are less crisp. In particular, changes in discriminability β will depend

on the extent to which the prior variance σ decreases following the predicted de-

crease in coding noise ν. Any decrease in σ may well be weaker than the increase

in experiment II due to floor effects, but this is largely an empirical question.

5.2 Results

I start from examining the most distinctive prediction arising from the increased

attention to the time delays hypothesized in the visual condition—the decrease

in present-bias. Figure 9 shows decumulative choice proportions of the larger-

later reward as the smaller-sooner reward increases. Panel A shows the choice

proportions in the textual condition, comparing a 6-week delay from the present

to a 6-week delay from 6 weeks. Panel C shows the equivalent choice proportions

in the textual treatment for a 12-week delay from the present, and compares it to

choice proportions for a 12-week delay from 12 weeks. In both cases, there is clear

evidence for present-bias, much like in experiments I and II (p < 0.001 in both

cases; Wilcoxon signed-rank test on individual choice proportions). Panels B and

D show the equivalent figures for the visual treatment. The choice proportions

between the delays from the present, and the delays from the upfront delay are

now indistinguishable (p > 0.45 in both cases). One can furthermore see that the

difference is closed from the side of the immediate delays, i.e. we clearly witness

a reduction in present-bias, rather than an overall increase in impatience.

I next proceed to estimating the NCT model parameters. Figure 10 shows a

comparison of the parameters ν, σ, and β across treatment conditions. Panel A

shows the difference in the posterior draws of the mean for the coding parameter ν,

νv−νt, where v stands for ‘visual’ and t for ‘textual’. 98.6% of the draws indicate a
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Figure 9: Decumulative choice porportions for larger-later option, textual vs visual
Decumulative choice proportions of the larger-later reward as the smaller-sooner reward increases from £33
through £49. Curves fit to the choice proportions are based on second degree polynomials. Panel A compares
the choice proportions for a 6-week delay from the present, to those for a 6-week delay from 6 weeks. The curve
shifts to the northeast as the upfront delay is introduced, indicating present-bias. Panel B shows the equivalent
comparison for the visual condition. No shift is now apparent, and the two curves are virtually indistinguishable.
Panel C shows a similar effect as in panel A for a 12-week delay from the present, versus a 12-week delay from
12 weeks in the textual condition. Panel D shows the same comparison for the visual treatment, and again fails
to replicate the distinct present-bias pattern in panel C.

lower coding noise in the visual condition. The individual-level parameters, shown

in panel B, paint a similar picture. Coding noise parameters in the visual condition

are clearly shifted to the left of those in the textual treatment (p < 0.001, signed

rank test). Panels C and D show the equivalent results for the standard deviation

of the prior, σ. The effect goes in the direction of a smaller standard deviation in

the visual condition, but fails to reach significance both in the aggregate (79.8%

of the probability), and for the individual-level parameters (p = 0.713).

Panel E shows the difference in posterior draws of the means for the discrim-

inability parameter β. 90.3% of the probability mass indicates that discriminabil-

ity is larger in the visual condition compared to the textual treatment. Panel

F shows the empirical cumulative distribution function of the individual-level pa-

rameters. The distribution for the visual condition is clearly to the right of the one
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Figure 10: Comparison of model parameters ν, σ, and β
Panel A shows differences in posterior draws of the means for coding noise ν, and panel B shows difference in
individual-level parameters estimates in a hierarchical model. Both figures show clear evidence that coding noise
is smaller in the visual condition compared to the textual condition. Panel C and D indicate no clear difference in
the prior SD σ. Panels E and F show evidence that discriminability β is larger in the visual treatment compared
to the textual treatment. The less pronounced effect on the average mean occurs because of outliers.

for the textual treatment. This effect is indeed highly significant (p = 0.007).20

Overall, we thus find clear evidence indicating that coding noise is reduced, while

discriminability is increased in the visual condition. These results are consistent

with the increase in attention to the time dimension posited by the NCT model.

Figure 11 shows the equivalent distributions for impatience α, and for the

computational parameter κ. As expected, there are no differences in impatience
20The difference in the strngth of the evidence between the aggregate and individual-level tests

is explained by a few outliers, which disproportionately influence the aggregate esimates.

30



22.7% < 0

0

25

50

75

−0.01 0.00 0.01 0.02
impatience (difference in means)

de
ns

ity
A

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
impatience (individual−level estimates)

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

textual

visual

B

100% < 0

0.0

0.1

0.2

0.3

−8 −6 −4 −2 0
constant kappa (difference in means)

de
ns

ity

C

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25
constant kappa (individual−level estimates)

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

textual

visual

D

Figure 11: Comparison of model parameters α and κ
Panel A shows the difference in posterior draws of the mean for the impatience parameter α, and Panel B shows
the empirical cumulative distribution functions of the individual-level estimates. There is no difference between
treatments, as predicted. Panel C shows the difference in posterior draws of the means for κ, and Panel D
shows the differences in individual-level parameters. The differences are pronounced, showing a clear reduction
in present-bias in the visual condition compared to the textual condition.

α at either the aggregate or the individual level (p = 0.375). We do, however,

find clear differences in κ. The aggregate-level evidence in panel C indicates that

100% of the difference in posterior draws of the means are negative, thus indicating

that the average parameter is significantly smaller in the visual condition. A

similar picture emerges from the individual-level estimates, where the parameters

estimated from the textual condition clearly exceed those estimated from the visual

condition (p < 0.001). There is thus clear evidence that providing a visual aid

focuses attention on the time dimension, thereby reducing present-bias.

6 Discussion and Conclusion

The noisy coding of time model suggests that choices between rewards obtaining

at different time periods may be subject to systematic manipulation. This was

showcased in experiment II, where expressing identical time delays in days rather
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than weeks systematically increased impatience in a way predicted by the model.

Experiment III added to that evidence by showcasing how the provision of visual

aids for the lengths of the time delays drastically reduced present-bias. Further

evidence comes from a series of experiments executed by Ebert and Prelec (2007).

Using delays of different lengths from the present, the latter showed that time

pressure decreased sensitivity to time delays, whereas the provision of visual clues

summarizing the time delays increased sensitivity to the same time delays. Seen

through the lens of the noisy coding of time model, these results further illustrate

how the model parameters can be systematically manipulated.

The model predictions and experimental findings described above are consis-

tent with a number of stylized facts in the reward discounting literature. For

instance, there is a highly consistent body of evidence showing that discount

functions show a hyperbolic shape when measured using time delays of differ-

ent length from the present (Thaler, 1981; Kirby and Maraković, 1995; Ebert and

Prelec, 2007; Zauberman et al., 2009). It has long been known that discounting

increases as time delays are subdivided into smaller intervals, an effect that has

been referred to as subadditive discounting (Read, 2001). This effect has indeed

been shown to be strong and pervasive, even though it is often ignored in inves-

tigations of discounting (Dohmen et al., 2017). Kable and Glimcher (2010) have

documented similar levels of delay-dependence independently of the upfront de-

lay. Read, Frederick, Orsel and Rahman (2005) have documented a ‘date/delay

effect’, whereby discounting weakens substantially when delayed payoffs are as-

sociated with calendar dates rather than with time delays. This effect is highly

consistent with the model I present here, since in the absence of any delays to be

noisily encoded, we would expect the effect of noisy delay perception to disappear.

The underlying working mechanism of the noisy coding of time model relies

on logarithmic transformations and Bayesian updating. It is important to empha-

size that there is no notion here that humans consciously execute such complex

mathematical operations. The logarithmic coding of numbers has been shown to

be physiologically hardwired in the brain (Dehaene, 2003), possibly because of
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its optimality for adaptation (Howard and Shankar, 2018). The Bayesian com-

bination of likelihood and prior, furthermore, takes the form of a simple linear

combination of two variables. Indeed, the success of the Bayesian Brain model in

neuroscience derives in no small part from the observation that it can easily be

implemented in biologically realistic neural network structures.

The noisy coding of time model I have presented makes stochastic predictions

on choice behaviour in tradeoffs between smaller-sooner and larger-later amounts

based on the noisy perception of time delays. A related literature has studied the

effects of randomness in choices and/or preferences on inter-temporal discount-

ing (Lu and Saito, 2018; He et al., 2019). These papers have highlighted that

particular patterns of randomness in responses or preferences may result in hyper-

bolic as-if discounting. The predictions emerging from these two classes of models

are quite distinct. While the noisy coding model predicts delay-dependence and

present-bias based on different mechanisms, these error models predict decreasing

impatience by postulating randomness in choices or preferences. The predictions

of these models are thus similar to those of the hyperbolic discounting literature.

Note furthermore that the underlying mechanism is also different. While typical

error models either model utility as being implemented with noise or add random

fluctuation to preference parameters, the NCT model sees time itself as being

noisily perceived.

None of the experiments I presented showed any evidence for strongly decreas-

ing impatience—a finding that is in line with much of the recent literature (see

appendix D for a review). Nevertheless, an unresolved question concerns why

strongly decreasing impatience is at least sometimes observed in experiments us-

ing monetary payoffs. A recent literature has attributed seemingly hyperbolic

patterns to the inherent uncertainty of the future (Halevy, 2008; Chakraborty et

al., 2020; Epper and Fehr-Duda, 2023). If a decision maker has doubts about

the delivery of future payouts, and if this decision maker exhibits the certainty

effect, then they will exhibit seemingly hyperbolic patterns of discounting. I have

been particularly careful to eliminate future uncertainty by having experiment I

33



conducted by a trusted person (the lecturer) and in an environment where inter-

actions are repeated and ongoing, or by using a hypothetical setup in experiment

II and III. That being said, future uncertainty could be easily incorporated into

the model by merging it with the model of Vieider (2021), where I use a formally

identical setup to model likelihood-distortions under uncertainty.

Decision making under risk and over time have been depicted as closely related

(Prelec and Loewenstein, 1991). A particular relation between the two approaches

is between probability distortions (probabilistic insensitivity) and time distortions

(time insensitivity). In the noisy coding of time model I presented, time insensi-

tivity can be traced back to noise in the encoding of time delays. In a twin paper

on decision making under uncertainty (Vieider, 2021), I show that likelihood-

sensitivity can be traced back to noise in the coding of likelihood ratios in binary

wagers using a formally equivalent setup. This is consistent with the results of

Epper, Fehr-Duda and Bruhin (2011), who documented a correlation between the

two phenomena. Joint investigations of decision making under risk and over time

in a noisy coding setup thus hold the promise of further illuminating the common

underlying drivers of choice behaviour.
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ONLINE APPENDIX

A Model derivation

To obtain actionable choice quantities, we need to combine the likelihood and

prior by Bayesian updating. Since r is a scalar, the posterior probability density

function of the mental time delay on a logarithmic scale will be:

p [ln(t)|r] = N
(

σ2

σ2 + ν2
× r +

ν2

σ2 + ν2
× µ ,

ν2σ2

ν2 + σ2

)
, (9)

where p indicates the probability density, and we can define β ≜ σ2

σ2+ν2
, so that (1−

β) ≜ ν2

σ2+ν2
. The parameter β thus gives us the weight attributed to the likelihood

relative to the prior mean, µ. It depends on the relative uncertainty associated

to the mental signal versus the mental prior. This gives us the expectation of the

posterior defined over the logarithm of t:

E[ln(t)|r] = βr + (1− β)µ.

Defining α ≜ e(1−β)µ yields the posterior expectation of t used in the main text.

Plugging this expression back into the mental choice rule in equation 2 and solving

for r yields the threshold equation 6.

We then exploit the known distributional properties of the mental signal r.

Taking the z-score of the likelihood by subtracting the mean and dividing by the

standard deviation, we obtain z = r−ln(t)
ν

, or equivalently, z = βr−βln(t)
βν

. We can

then compare this z-score to an equivalent z-score obtained from the threshold

equation, zt =
βr−[ln(−ln( y

x
))−ln(α)]

βν
. Subtracting the former from the latter gives

us the probabilistic choice rule in equation 7. Given that the difference of two

standard normal variables will itself follow a standard normal distribution, we can

interpret the derived equation directly as a Probit choice rule.
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B Choice rule on orignal scale

In my preferred specification, I have assumed that the choice rule is transformed

from its original scale by taking the log twice. This does in no way affect the

conclusions. If we work on the original scale, the optimal choice rule is exp(−t)x >

y. We now derive the posterior expectation of the mental time delay t on the

logarithmic scale just like above. To obtain the posterior expectation of the time

delay t itself, we exploit the properties of the log-normal distribution, which has

a mean µ+ 1
2
σ2
p, where σ2

p ≜ ν2σ2

ν2+σ2 is the posterior variance. We thus obtain

E[t|r] = exp

(
βr + (1− β)µ+

1

2
σ2
p

)
,

or alternatively, E[t|r] = exp
(
βr + (1− β)(µ+ 1

2
σ2)
)
. Substituting this mental

quantity for t in the choice rule and rearranging, we get exp (−exp(βr + ln(α))) >

y
x
. Taking the logarithm of both sides, multiplying by −1, taking the loga-

rithm again, and rearranging we once again obtain the threshold equation r <

β−1
[
ln
(
−ln

(
y
x

))
− ln(α)

]
, shown in the main text.

The only difference from the choice rule presented in the main text is now in

the definition of the impatience parameter, which takes the form α̃ ≜ exp((1 −

β)(µ + 1
2
σ2)) instead of α ≜ exp((1− β)µ). This adds to the intuition of why an

increase in impatience was Note, however, that the two models deliver predictions

that are empirically indistinguishable. Indeed, the two models fit to the same data

show a difference in predictive fit that is exactly equal to 0. The reason is very

simply that µ is a ‘free parameter’. It is free in the sense that it does not enter

into the definition of any other parameter, and can thus flexibly adjust following

the difference in the definition of α̃ and α.

C Generalization to include outcome distortions

I have assumed outcomes to be perceived without noise. If outcomes are also

subject to noisy coding, the two dimensions will need to be derived jointly to
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accurately represent the decision-making process. Starting from the once-logged

choice rule τℓ−τs < −ln
(
y
x

)
, let z ≜ −ln( y

x
). One can then assume that z is subject

to noisy coding. Assuming that the log of the ratio of the smaller to larger payment

is encoded in a way similar to time delays, we obtain the following likelihood

and prior: rz ∼ N (ln(z), ν2) , ln(z) ∼ N (µo, σ
2
o). Using the usual procedure

and after defining γ ≜ σ2
o

σ2
o+ν2

, we obtain the posterior expectation E[ln(z)|rz] =

γrz + (1 − γ)µo. Substituting this expression together with the one for the time

delay into the choice rule, we obtain the threshold equation βr − γrz < −ln(α),

which assumes that the sooner and later amounts share a common prior (see Khaw

et al., 2021, for an analogous assumption for decisions under risk). Distributing

the signals jointly, obtaining the z-score, and comparing it to the threshold z-score,

we obtain the following probabilistic choice rule:

Pr[(x, ℓ) ≻ (y, 0)] = Φ

(
γ × ln

[
−ln

(
y
x

)]
− [ln(α) + β × ln(t)]

ν
√

β2 + γ2

)
. (10)

Notice that the addition of outcome transformations now affects mostly The model

parameters α and β. That is, one could rewrite the numerator of the expression

in parentheses as ln
[
−ln

(
y
x

)]
− γ−1 [ln(α) + β × ln(t)] (as long as one rewrites

the denominator as γ−1
(
ν
√
β2 + γ2

)
). Once can then see that the addition of a

parameter γ ≤ 1 would simply serve to reinforce the conclusions already reached

in the main text.
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D Fit with the literature

In this section, I briefly review some of the most closely related discount functions

used in the literature. While an exhaustive review of discounting models and

functions is beyond the scope of this article, this will allow me to compare the key

features of the NCT model with those of some formally related functions.

Samuelson (1937) famously introduced a model in which utilities of future

outcomes are discounted by an exponentially decreasing discount function:

D(τ) = exp(−ρτ), (11)

where D is the discount function and ρ is the subjective discount rate. The model

thus entails constant impatience and no delay-dependence. It is also determinis-

tic—a feature that it shares will all discount functions discussed here in sequence.

While the model above remains the normative benchmark, many descriptive

deviations from that benchmark have been observed over the years (Thaler, 1981;

Loewenstein and Prelec, 1992; Read, 2001). Many types of discount functions have

been proposed to account for such ‘anomalies’. A popular form in economics is

the quasi-hyperbolic discount function (Phelps and Pollak, 1968; Laibson, 1997):

D(τ) = β × exp(−ρτ), (12)

where β ≜ 1 for immediate payments, and β < 1 thus captures present-biased

behaviour when one of the payouts is immediate. Once an up-front delay is in-

cluded, β drops out and discounting is exponential. Recent meta-analyses provide

clear evidence for present-bias in experiments using monetary rewards, although

present-bias may be even stronger when time discounting is measured for con-

sumption (Imai et al., 2021).

A parallel literature has discussed hyperbolic discounting. Hyperbolic func-

tions are often motivated by the common difference effect, an anomaly whereby

the discount rate for a given time delay decreases as a common delay is added to

both outcomes (Loewenstein and Prelec, 1992). Empirically, however, the function
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has most often been fit using delays of different length from the present (Thaler,

1981; Kirby, 1997; Ebert and Prelec, 2007; Zauberman et al., 2009), thus poten-

tially confounding strongly decreasing impatience and delay-dependence (Read,

2001). In addition to the constant sensitivity function proposed and axiomatized

by Ebert and Prelec (2007) already discussed above, Mazur (1987) introduced an

early one-parameter function capturing ‘proportional discounting’:

D(τ) =
1

1 + ζτ
, (13)

where ζ is the subjective discounting parameter. Discounting is by definition pro-

portional to the time delay. Sozou (1998) provides biological foundations for this

function based on hazard rates, i.e. probabilities of future rewards not materi-

alizing. Just like all the other functions from the general hyperbolic class, the

function cannot account for delay-dependence at all. Even when fitting purely

data obtained with different delays from the present, however, the functional fit is

typically poor. Figure 12 shows the fit to the data obtained with delays AB, AC,

and AE in experiment I, and compares it to an exponential benchmark. Although

the function fits better than the exponential function, the improvement in fit is

small, and overall, fit remains poor.

Another popular function is the hyperbolic function proposed in the seminal

paper of Loewenstein and Prelec (1992). The function takes the following form:

D(τ) =

(
1

1 + ζτ

) ξ
ζ

, (14)

where ζ ≥ 0 measures the degree of decreasing impatience. The proportional dis-

count function seen above emerges as a special case when ξ = ζ. Again, decreasing

impatience, present-bias, and delay dependence cannot be separately quantified.

Bleichrodt, Rohde and Wakker (2009) proposed a more flexible double-exponential

family of functional forms, that allow to overcome limitations of the above function

in capturing very strong patterns of decreasing impatience, as well as increasing

impatience. Their constant relative decreasing impatience function converges to
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Figure 12: Fit of proportional discounting function to delays from the present
The figure shows the fit of a proportional discounting function to the aggregate level data from experiment I,
obtained using delays of different length from the present. Though better than the fit of the exponential function,
overall the fit remains poor.

the function of Ebert and Prelec (2007) when immediate payouts are included.

Their constant absolute decreasing impatience function takes the following form:

D(τ) =


er×e−cτ−1 if c > 0

e−rτ if c = 0

e−r×e−cτ if c < 0,

(15)

where the parameter c indicates the convexity of the discount function D(.). For

c = 0, the function converges to exponential discounting. Once again, the func-

tion is geared towards capturing decreasing impatience, but foresees no separate

mechanisms for present-bias and delay-dependence.

Notwithstanding the large literature on generalized hyperbolic discount func-

tions, the evidence on impatience decreasing for constant delays as the up-front

delay increases is mixed at best. Read (2001) found no evidence for strongly de-
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creasing impatience across 3 experiments. Developing and testing a novel index

for decreasing impatience, Rohde (2019) found evidence for present-bias, but not

for further decreases in impatience with larger up-front delays. He et al. (2019)

concluded from two experiments that “decreasing impatience is not as robust as

is widely held” (p. 63). Similar conclusions were reached by a number of other

recent papers carefully controlling for delay-dependence (Attema, Bleichrodt, Ro-

hde and Wakker, 2010; Cavagnaro, Aranovich, McClure, Pitt and Myung, 2016).

On the other hand, Bleichrodt, Gao and Rohde (2016) report evidence for strongly

decreasing impatience for both health and money. Ultimately, however, the global

evidence remains difficult to assess due to the variety of measurement methods

and stimulus types used in the literature. It is worth noting that the predictions

of the NCT model apply to a binary choice setup, which may be difficult to map

into other methodologies used in the literature. For instance, Read and Roelofsma

(2003) explicitly tested direct choice against matching techniques, and found some

evidence for strongly decreasing impatience in matching, but none in choice tasks.

While an in-depth review of the literature on decreasing impatience is beyond

the scope of this article, there is no doubt that at least some papers have docu-

mented such patterns. A possible explanation is that these findings may be driven

by an additional motive I have not modelled. Halevy (2008) proposed a model

whereby choice patterns reminiscent of hyperbolic discounting may arise in trade-

offs between timed, nominally sure amounts because of the inherent uncertainty

of the future. If agents have some uncertainty about future payoffs, and if they

exhibit nonlinear probability distortions, then this will result in present-biased

behaviour. Epper and Fehr-Duda (2018) further showed how the uncertainty of

the future could result in strongly decreasing impatience, as well as accounting

for a number of other stylized facts that have been documented in the literature.

The uncertainty in these models is captured by the subjective probability that a

future payment will really take place and can be enjoyed. The uncertainty in the

model I have presented concerns the mental representation of the time delay itself.

That being said, the two types of uncertainty may well co-exist, and the model
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here presented could easily be generalized to include the inherent uncertainty of

the future—a point to which I will return in the discussion.

Finally, Read (2001) proposed the following functional form to account for

delay-dependent preferences between a sooner delay τs and a later delay τℓ:

D(τs, τℓ) =
1

1 + ζ(τℓ − τs)γ
, (16)

where ζ again captures discounting proportional to the time delay, and 0 < γ < 1

captures delay-dependence. Kable and Glimcher (2010) propose a variant of this

function imposing γ ≜ 1, which captures what they refer to as ‘as soon as possible

(ASAP) discounting’, so called because it captures seemingly hyperbolic patterns

for increasing delays no matter what the up-front delay. The function is founded

on neural data which failed to detect separate coding of an ‘immediacy signal’ in

the brain—an observation that is consistent with the NCT model implementation

of present-bias. The main differences with the NCT model are that these mod-

els cannot account for present-bias, and that the two parameters are nominally

independent.

Several recent models have proposed setups in which hyperbolic discounting

emerges due to randomness in decisions and in tastes. Lu and Saito (2018) pro-

posed a random preference model in which the discount function of a decision

maker is stochastic. He et al. (2019) combined an exponential discounting model

with both stochastic choice under the form of a logit model, and stochastic tastes

under the form of a random preference model. A central feature of these models is

that they arrive at predictions of decreasing impatience even when the underlying

discounting is exponential. These models are, however, geared towards decreas-

ing impatience, and none of them predicts delay-dependence, making them rather

distinct from the NCT model proposed here.
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E Econometric approach

The noisy coding of time model is inherently stochastic, so that it can be directly

implemented without any further need for separate assumptions about the error

structure. I augment traditional models, which are deterministic in nature, by

a normally distributed, additive error term, which constitutes the most common

error model used in the literature. While some error models have been proposed

that may result in non-stationary discounting patterns even when starting from

an optimal setup of exponential discounting (Lu and Saito, 2018; He et al., 2019),

these error models result in predictions that are quite distinct from those emerging

from the model here presented, and which are rather closer to traditional setups.

I use a Bayesian random-parameter setup to obtain individual-level parameter

estimates jointly with aggregate estimates, which serve as endogenously-estimated

priors for the individual estimates. Compared to purely aggregate estimates, such

a setup has the advantage of producing individual-level estimates of the param-

eters of interest; compared to individual-level estimates, such a model discounts

noisy outliers, thus resulting in increased predictive performance (Conte, Hey and

Moffatt, 2011; von Gaudecker, van Soest and Wengström, 2011; Baillon, Bleichrodt

and Spinu, 2020). I thus obtain the posterior estimate pi(θθθn|z) given choice data

z over the individual parameter vector θθθn from

pi(θθθn|z) ∝ p(z|θθθn)× p(θθθn), (17)

where z takes the value 1 if the larger-later reward is chosen and 0 otherwise, and

where the likleihood p(z|θθθn) is defined as follows:

p(z|θθθn) = (Pr[(x, τℓ) ≻ (y, τs)])
z × (1− Pr[(x, τℓ) ≻ (y, τs)])

1−z, (18)

with Pr[(x, τℓ) ≻ (y, τs)] taking the form of the choice probability in equation

7 for the NCT model. For the standard models, on the other hand, the choice

probability will be defined by the functional form underlying the model, plus a

normally distributed additive error term, assumed to take the form of ‘white noise’
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(Hey and Orme, 1994; Bruhin, Fehr-Duda and Epper, 2010).

Finally, the prior distribution for the individual-level parameters, p(θθθn), takes

the following form:

p(θθθn) = N (θθθ,ΣΣΣ), (19)

where θθθ is a vector containing the aggregate parameter means, and ΣΣΣ is a covari-

ance matrix of the individual-level parameters. Both θθθ and ΣΣΣ are endogenously

estimated from the aggregate data, and serve as priors for the individual-level

estimates. The hyperpriors for the parameters in θθθ and ΣΣΣ are chosen to be mildly

regularizing, thus helping the algorithm to converge, but being wide enough to ac-

commodate any plausible parameter values that may emerge from the data. This

follows best practices in Bayesian econometrics (McElreath, 2016), and the esti-

mates reported below are not sensitive to changes in the hyperpriors used, given

that the amount of data can easily overpower any prior at the aggregate level.

I maximize the logged sum over the choice-level observations i of the likeli-

hood function described above using Bayesian simulations in Stan (Carpenter,

Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li and Riddell,

2017), launched from RStan (Stan Development Team, 2017). I conduct com-

parisons between different models using leave-one-out cross-validation (Gelman,

Hwang and Vehtari, 2014; Vehtari et al., 2017). The choice of cross-validation

methods for model selection serves to avoid the overfitting of existing data, instead

focusing on the predictive performance of the models. This ensures coherence with

the random-parameter setup used, and constitutes a more adequate test of model

fit in the present setting than alternative methods geared towards optimizing the

fit to existing data.
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F Additional results experiment I

Figure 13 shows the comparison of decumulative choice proportions for the delay

AC compared to the delay CE, i.e. for 12 week delays where the first delay occurs

from the present, and the second from an upfront delay of 12 weeks.
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Figure 13: present-bias for 12 week delays—additonal comparisons
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Figure 14: Non-parametric illustration of subadditivity—additonal comparisons
The subadditivity comparisons are obtained by comparing a discount factor over the whole period with the
product of the discount factors of the subperiods. The pattern in panel 14(a) thus obtains from a comparison
of the discount factor δ12,24 with the product of the two discount factors δ12,18 × δ18,24, where the subscripted
numbers indicate the extremes of the time delays. The pattern in panel 14(b) obtains from a comparison of
the discount factor δ0,24 to the product of all underlying 12-week discount factors, δ0,12 × δ12,24. Dashed lines
indicate correlations.
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G Experimental Instructions

Thank you for taking part in this experiment. You will be asked to take some 
decisions involving time delays. On each screen, you will be asked to choose 
between an amount of money that is paid at a sooner moment in time, and an 
amount that is paid at a later moment in time. Time delays are always indicated in 
weeks from today. Here is an example of a choice task: 
 

 
 
You will be presented repeatedly with such tasks, and you are asked to indicate 
your choice for each one of those tasks. The experiment will take approximately 20 
minutes. At the end of this class, 10 participants will be randomly drawn to play 
one of their choice for real money. Notice that both the amounts and the time 
delays involved may change from screen to screen. Please consider the information 
carefully and choose your preferred option. 
 
 
At the end of the experiment, the lecturer will announce the students selected to 
play for one of their choices. If you have chosen the immediate amount in the 
randomly selected choice, we will transfer the corresponding amount to your bank 
account immediately while you are waiting. Since transfers amongst all major banks 
are immediate, you will be asked to check your bank account and confirm the 
receipt of the money before leaving. 
 
If you have chosen a delayed amount in the randomly selected choice, then that 
amount will be paid to you on the indicated day. For instance, an amount indicated 
as obtaining in 4 weeks will be paid 4 weeks from today, i.e. on Monday 
November 15th. The lecturer will make a note of your bank account to organize the 
transfer. You will receive a certificate signed by the lecturer to guarantee the 
transfer. The certificate will indicate the amount to be paid and the date of transfer. 
It will also contain the contact details of the lecturer, for the case that you change 
bank account or have any questions concerning the transfer. 
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H Additional results experiment II

Here, I document the stylized patterns predicted by the NCT model. Figure 15

shows decumulative choice proportions for the periods AB versus BC for weeks

(panel A) versus days (panel B). In both cases, there is clear evidence for present-

bias. The same is true when comparing a delays between now and 24 weeks, to a

delay between 24 weeks and 48 weeks. Once again, present-bias is string both in

the weeks treatment (panel C) and in the days treatment (panel D).

Figure 15: Decumulative choice proportions for larger-later option, present-bias

Figure 16 displays decumulative choice proportions for the larger-later reward

as the upfront delay is scaled up. We see the same patterns as in experiment I.

In particular, there is no consistent effect indicating decreasing impatience as the

up-front delay is increased, and this is true both for weeks and the days frame,

and both using the interval AC (panel A) and the interval AE (panel B).
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Figure 16: Decumulative choice proportions for larger-later option, common difference effect

Finally, figure 17 documents delay dependence. Once again, delay dependence

is string in both the week frame (panel A) and days frame (panel B).

Figure 17: Scatter plot of discount factors over long time delays against factors calculated from
shorter time delays
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