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Abstract

Prospect theory (PT )—originally developed to accommodate challenges to ex-
pected utility theory such as the Allais paradoxes—has proven to be an exceptionally
successful descriptive theory of choice. Nevertheless, the emergence of new para-
doxes and a shift in “scientific taste” and interests over time have introduced some
challenges to PT. I argue that the source of these challenges can be traced to the
exogenous nature of the PT parameters, which has led to a proliferation of ex post
explanations at the expense of ex ante predictions. In this chapter, I thus provide
an overview of recent generative accounts of what I call “PT-like behaviour”, which
endogenize (subsets of) PT parameters based on neuro-biological and evolutionary
principles. While still in their infancy, such models offer a perspective on where the
stylised behavioural patterns discussed in the PT literature may originate.
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1 Introduction

Prospect theory (PT ) has proven very successful at describing observed choice pat-

terns under risk—arguably its raison d’être. The focus on describing observed choices—

resulting from its historical rationale of accommodating behavioural deviations from ex-

pected utility theory (EUT ), such as the Allais paradoxes—has at the same time resulted

in some limitations. These limitations become particularly apparent when examining

what sort of behaviour is actually predicted by PT ex ante, as opposed to what it can

explain ex post. This distinction is indeed crucial, given that predictive performance is

generally taken to be a hallmark of scientific (i.e. empirically falsifiable) models.

Many of these limitations can be traced to the fact that PT is silent on the origin of the

behavioural patterns described by its functionals. The parameters governing choices in

the model are taken to be exogenous. This means that PT is not well suited to answer

deeper questions about the origin of “preferences” or observed choice patterns (henceforth:

risk-taking), which have received increasing interest over the years. This lack of insights

on the origin of behaviour also shows when it comes to the prediction of behaviour across

contexts. PT functionals have been shown to vary widely depending on the type of

elicitation tasks (Hertwig, Barron, Weber and Erev, 2004; Feldman and Ferraro, 2023;

Bouchouicha, Oprea, Vieider and Wu, 2024), yet no account of such context-dependence

is possible within PT (or for that matter, any model applying stable preference functionals

to objective choice primitives).

Here I review the increasing number of articles investigating the potential origins of the

type of behaviour documented in the PT literature. I will refer to models detailing

the deeper origins of behaviour as generative (as opposed to the descriptive–normative–

prescriptive classification typically used in decision-making). The generative nature of

the models thereby derives from their grounding in evolutionary or neural principles: they

are supposed to pre-exist and causally determine choice. One essential question regards

why we might be interested in such models at all. After all, revealed preferences are

all economists typically care about. The grounding of most of these models in cognitive

limitations and how we deal with them, however, has deep implications for our under-

standing of choice. Most disruptively, most of these models suggest that the choices we

observe are not revelatory of preferences at all: Cognitive frictions in our perception or
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manipulation of choice quantities, or difficulties we have mapping them into values, can

result in choice behaviour that is to a large degree an expression of cognitive noise, rather

than preferences. This does not imply that stable preferences do not exist: rather, they

may be hidden by noise-induced reactions, and hence not revealed—a point to which I

will revert in the discussion.

Nowhere does the exogeneity assumption show more than in the “source function” ap-

proach to ambiguity (Abdellaoui, Baillon, Placido and Wakker, 2011). Taken at face

value, the approach could be used to organize violations of procedure invariance, sim-

ply by postulating that different elicitation methods constitute different “sources of risk”.

Given that such sources are identified ex post based on observed behaviour, the number

of sources is potentially infinite. Temperatures in Rotterdam versus Tokyo are a popular

example of different sources. This implies that weather in Paris, Antwerp, or The Hague

would also be different sources. So would weather in Rotterdam next week. Or indeed

objective probabilities arising from dice versus cards. One can see how this approach

quickly spins out of control, de facto requiring an infinity of parameters. This is indeed

a critique used against PT in general: its flexibility for ex post rationalization stands in

the way of predictions, of which it arguably makes preciously few.1

Generative models hold the promise of counteracting this phenomenon. One way of seeing

them is that they attempt to endogenize PT parameters by making testable predictions

about how parameters governing the choice process ought to change under given circum-

stances. They thus hold the promise of explaining several empirical paradoxes arising

under PT. One example are the opposite qualitative patterns of probability weighting

functions when probabilities are described versus experienced (see Wulff, Mergenthaler-

Canseco and Hertwig, 2018, for an overview). Others have emerged more recently: iden-

tical choices will solicit radically different behavioural patterns when presented in choice

lists or as binary choices (Bouchouicha et al., 2024), or indeed when grouping choices

into lists by probabilities versus sure outcomes (Feldman and Ferraro, 2023; Shubatt and

Yang, 2024). Such patterns are incompatible with the application of pre-existing prefer-

ence functionals to choice primitives, which are identical across contexts. Understanding
1Daniel Friedman (1989), who proposed a pioneering model showing how S-shaped utility could emerge

from constrained optimization, describes exercises such as conducted in PT as follows: “Despite the high
intellectual caliber of much of this work, there is an important sense in which it has been retrograde:
theory is adjusted to evidence by weakening, not strengthening, its predictive power” (p. 1243).
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where differences may come from will thus require a generative account endogenizing the

model parameters.

Economic models such as subjective expected utility have long postulated overly strong

rationality precepts (Bossaerts, Yadav and Murawski, 2019). PT—while being descriptive

rather than normative in outlook—has maintained many of these strong principles: tran-

sitivity (shown to be violated already by Tversky, 1969), stochastic dominance, and strong

separability precepts between probabilities and outcomes and between gains and losses,

all of which are well-known to be violated (Birnbaum, 1999; 2008; Wu and Markle, 2008;

Fehr-Duda, Bruhin, Epper and Schubert, 2010). Similar issues apply to rank-dependence,

emphasizing mathematical coherence over the accurate description of behaviour. This has

created a fundamental contradiction: while the focus of PT is purportedly descriptive,

its emphasis on mathematical coherence in a deterministic setting was bound to result

in violations of the model, given the fundamental stochasticity of behaviour known since

the pioneering investigation of Mosteller and Nogee (1951). It should thus not come as

a surprise that the generative accounts I present here challenge these specific aspects

of PT, even while they are creating cognitive underpinnings that endogenize the model

parameters.

PT is often defended by its proponents based on arguments of rationality and coherence.

PT proponents have, for instance, been known to argue that the deterministic structure of

the model makes it easy to handle, and that abiding by certain principles of mathematical

coherence makes the model aesthetically pleasing. Unsurprisingly, these are the same

arguments used by EUT apologists against PT. Taste, however, should not be mistaken

for a scientific argument. It is also highly subjective: some of the generative models

I discuss below implement constrained (stochastic) optimization as used in many fields

in economics and beyond. The underlying mathematical and statistical principles are

highly coherent, even though they result in violations of some of the strict rationality

principles endeared to decision theorists. Elegance clearly lies in the eye of the beholder.

Some of the generative models presented here would be considered “normative” when

considered from a neuro-scientific and neuro-biological point of view. Given constraints

in information processing, the processes being deployed to deal with these constraints

will typically be optimal.2

2Criteria of optimality can of course be very different from economics. That simply occurs because
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The point, however, runs deeper than this. One possible interpretative lens through

which to see PT jointly with the historical context in which it evolved is the strength of

the revealed preference paradigm (and the undeniable appeal of the underlying axioms).

It is then not surprising that Kahneman and Tversky (1979) would have opted for a de-

terministic model, and chosen to ignore the elephant in the room that were the persistent

choice inconsistencies. The implications of the models reviewed here is quite damning

for revealed preferences. Virtually all of them—explicitly or implicitly—rely on some

form of perceptual or combinatorial noise. To the extent that observed choice patterns

may arise mainly from ‘cognitive noise’, one can no longer pretend that such choices can

‘reveal’ anything resembling a ‘preference’. Pushing inconsistencies into a generic error

term relegated to the basement of scientific interest neatly solved this issue, for which

the economics profession anno 1979 would not have been ready. Even today, it raises

profound issues about whether stable behaviour exists at all, and if yes, where it may

originate—a question which will have to wait for the discussion to be re-examined.

This is not to say that generative models solve all of these issues. The approach is still

relatively new, and as often happens in initial phases of discovery, some contradictions

are starting to emerge between different generative models. While individual models

are starting to be tested empirically—with some promising early evidence accumulating

in their favour—comparative tests that would allow us to discriminate between different

model families remain exceedingly rare. Another limitation is currently given by the sheer

complexity of the neural functions which serve as an inspiration for most of these models—

and more in general—by our still comparatively poor understanding of the functioning of

the neural apparatus. This complexity means that existing models have largely focused

on specific aspects of the underlying process that are more or less understood or that

can easily be captured in the type of stylized models predilected by social scientists. For

process models, however, details may matter more than for purely descriptive models—an

issue that remains largely to be addressed.

In what follows, I will organize the chapter around the main stylized patterns in PT:

decreasing sensitivity towards gains and losses, loss aversion, and probability weighting.

Although not an integral part of PT, I also dedicate a separate section to stochastic

cognitive frictions may well make it impossible to directly maximize value or utility. Optimality will then
be defined by the best possible strategy conditional on cognitive noise.
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choice, which typically arises endogenously from the generative accounts I discuss. I

will subsequently discuss the state of the empirical evidence, before circling back to a

discussion of some of the more fundamental questions emerging from modelling generative

versus descriptive patterns.

2 Decreasing sensitivity towards gains and losses

One of the hallmark patterns described in PT is decreasing sensitivity towards changes in

wealth from a reference point—a principle that goes back at least to Markowitz (1952),

and the foundational debate about the interpretation of expected utility theory (see

e.g. Vickrey, 1945; Friedman and Savage, 1948).3 Scoring changes in wealth on an

absolute (and presumably invariant) utility scale, however, may be cognitively taxing.

Tversky (1969) recognized this while discussing the superiority of comparative valuation

when it comes to the ease of decisions. Nonetheless, Kahneman and Tversky (1979)

decided to include utility transformation of absolute wealth changes into PT. Why—

and possibly how—such valuations come about has received quite some attention. Here

like elsewhere, I will discuss some select approaches more in depth at the expense of

exhaustively reviewing the existing literature.

2.1 On the evolutionary origins of S-shaped utility

Why would people exhibit decreasing sensitivity towards changes in wealth? One answer

may derive from the optimal—in the sense of biological fitness-maximizing—solution to a

problem arising from limitations to the extent with which we can perceive and assign dif-

ferences in value to consumption outcomes. Assessing the utility of consumption outcomes

has instrumental value for the optimization of decisions. From an evolutionary design

perspective, however, the more important question is how utility defined over per-period

consumption can be exploited to maximize a long-term goal such as the maximization of

evolutionary fitness (equated with the number of surviving offspring).
3Here as elsewhere, I will discuss PT as making predictions about behaviour (such as decreasing

sensitivity twoards changes in wealth), in addition to providing mathematical functionals to summarize
behaviour. While this interpretation may no longer be warranted—the fact that functions in PT can take
any form is often emphasized by PT proponents when countering potential criticisms of the model—I
believe that such an interpretation is coherent at least with early discussions in the PT literature, as
well as being more compatible with the idea of PT being a scientific model that makes actual, falsifiable
predictions, rather than a mere ‘data summary apparatus’.
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The answer provided by Robson (2001b) is that this requires a mapping from per-period

consumption utility to utility defined over evolutionary fitness. Let x be evolutionary

fitness, and let v be the utility of such fitness, with v(x) the maximand in the problem.

Given that x is a long-term outcome observable over the course of decades, and which

therefore does not lend itself to immediate maximization, nature could plausibly have

endowed humans with a more proximate utility function over consumption, call it u(c).

Since consumption is observed for each single period, adjustments to the consumption

profile are more readily achievable. To ensure that consumption optimization lines up

with fitness maximization, nature would also have created a mapping function from con-

sumption to fitness. Let this mapping be x = ψ(c). We can then directly define a utility

function over consumption, u(c), where u ≜ v ◦ ψ, i.e. u(c) = v(ψ(c)).

Robson (2001a) and Netzer (2009) base their predictions on the observation that indi-

viduals have limited cognitive capacity, which contrasts with potentially infinitely many

values of c. Given the scarcity of neural resources, it will be evolutionarily optimal for an

organism to allocate the finite number of perceptual thresholds at its disposal where they

matter the most. The exact solution then depends on the optimization criterion. Rob-

son (2001a) adopts the minimzation of the probability of mistakes as his criterion, and

shows that in this case the utility ought to directly reflect the distribution of consumption

opportunities in the environment (i.e. utility is equated with the CDF of consumption

opportunities). Netzer (2009) argues that it will further be important to minimize the

size of mistakes. Given that the size of mistakes will generally be inversely proportional

to the probability of the mistakes, this implies that utility will not be quite as steep as

implied by Robson’s criterion, and that somewhat more “attention” will be dedicated to

regions of consumption that are encountered less frequently.

The resulting utility curve is steepest in the regions corresponding to frequent outcome

realizations, while flattening off in regions where consumption opportunities are less fre-

quent. This results in an S-shaped utility function, and provides an evolutionary foun-

dation for modelling decreasing sensitivity towards changes in wealth such as proposed

by Markowitz (1952) and incorporated into PT by Kahneman and Tversky (1979). In

this sense, marginal utility can be interpreted as the level of attention attributed to a

consumption option. An additional feature of the model is that the peak of the empiri-
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cal distribution functions of consumption opportunities endogenizes the reference point,

which thus corresponds with the expected consumption level.4 Other than the models

we will see below, the Robson-Netzer framework thus endogenized the reference point in

addition to utility curvature.

2.2 Comparative value and decreasing sensitivity

Mapping positive and negative changes in wealth onto an absolute (and presumably in-

variant) utility scale appears like an extremely taxing task from a cognitive point of view.

One approach to making such valuations simpler is by comparing outcomes to ‘typical

outcomes’ experienced by the decision maker. This results in comparative valuations as

formally enshrined into the pioneering Decision-by-Sampling (DbS ) model of Stewart,

Chater and Brown (2006).

In the Decision-by-Sampling account, the value of an option will depend on its ordinal

rank amongst outcomes experienced in the past. Concretely, any given outcome x to be

evaluated is compared to a small number of samples drawn from memory. The utility

of x will then be given by the relative rank R of x amongst the N drawn samples,

u(x) = R−1
N−1

. Stewart et al. (2006) show that the distribution of credits to UK bank

accounts follows a power law, whereby moderately large payments are relatively frequent,

whereas very small and very large payments are less frequent. This results in a power

(constant relative risk aversion: CRRA) utility specification, providing micro-foundations

for concave utility for positive changes in wealth. Stewart et al. (2006) furthermore

document similar distributional patterns for debits (experienced losses), which gives rise

to decreasing sensitivity towards losses (i.e. convex utility for losses).

The upshot of the model is that utility functions revealed by choices should reflect the

experiences of the individual. Utility curvature is thus endogenously determined by the

experiences of an individual. This also implies that the utility of a subject should change

dynamically when exposing experimental subjects to different outcome ranges—a testable
4Glimcher and Tymula (2023) propose a neurally-based model of devisive normalization, whereby the

payoff expectation drives the reference point. The model has the merit of including explicit dynamic
equations for the payoff expectations, which are a weighted average of payoffs observed in the past,
with weights decreasing as a function of temporal distance. The curvature of the function, in contrast,
is treated as an exogenous parameter in the model, so that it is best seen as complementary to the
approach presented here.
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prediction to which I will return in the discussion about empirical tests.

2.3 Noisy Cognition and Bayesian Inference

A vast literature in neuroscience discusses an approximate number sense, which allows

humans (as well as animals) to neurally code numbers semi-automatically on an analogue,

approximate scale (see Dehaene, 2011, for a book-length discussion). Formal mathemati-

cal capabilities—while distinct and generally based on language processing—are further-

more thought to be linked to this approximate number sense. This suggests that, at least

when many decisions are taken in short succession as typical for experiments, decision-

makers may rely on approximate number assessments as inputs to their decision process.

The question then becomes how to optimally deal with such noisy inputs—a question

that is addressed in the noisy cognition model of Khaw, Li and Woodford (2021).

Khaw et al. (2021) (henceforth: KLW ) use this principle to propose a model explaining

small-stake risk aversion and decreasing sensitivity towards gains and losses (see also

Woodford, 2012). Take a binary choice between a sure outcome c and a lottery paying

a prize x with probability p, or else 0. KLW assume that outcomes c, x are perceived

with noise, while p and 0 are perceived objectively. Noisy signals are modelled as single

draws from distributions providing an unbiased representation of the logged outcomes:

rx ∼ N (ln(x), ν2) and rc ∼ N (ln(c), ν2). The logarithmic mapping—which finds its

justification in the logarithmic coding of numbers in the brain (Dehaene, 2003)—implies

that the mental coding process implements Gustav Fechner’s representation of Weber’s

law (Fechner, 1860; Thurstone, 1927b).

A simple choice rule may now consist in choosing directly based on this signal, as proposed

by Thurstone (1927a). This results in a mechanism not dissimilar to the one in Decision-

by-Sampling, although the soource of errors is technically different. The problem with this

approach is that it is not optimal. Assume the DM has expectations about the probability

distribution of {x, c}, enshrined in a prior distribution ln(x), ln(c) ∼ N (µ, σ2). The DM

can then calculate the posterior probability of the cause (the choice primitives x, c) of

the noisy signals, which take the form E[ln(x)|rx] = σ2

σ2+ν2
rx +

ν2

σ2+ν2
µ and E[ln(c)|rx] =

σ2

σ2+ν2
rc +

ν2

σ2+ν2
µ. The signals will be taken into account in proportion to their precision,

as measured by ν−2: the less precise the signal, the less the DM will rely on it. While
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this approach introduces systematic bias in the form of regression to the prior mean, it is

optimal inasmuch as it minimizes the mean squared error of the estimator (see Bishop,

2006, chapter 3). Incorporating these inferences into a choice rule aiming to maximize

expected value yields:

Pr[(x, p) ≻ c] = Φ

[
α ln(x/c)− ln(p)−1

√
2αν

]
,

where Φ represents the standard normal CDF (making this a Probit model), and α ≜

σ2

σ2+ν2
. Choice will be inherently stochastic because of the randomness in the signals rx, rc.

Focusing on the numerator and exponentiating, we see that the choice likelihood will be

proportional to pxα − cα, thus providing cognitive micro-foundations for as-if CRRA

utility. This is indeed how the model explains small-stake risk aversion—assuming that ν

is independent of {x, c}, apparent risk aversion inferred from behaviour will be dissociated

from the stakes involved.5

The model provides an excellent illustration of how optimal ways of dealing with cogni-

tive frictions can produce as-if utility functions. Applied separately to gains and losses

(with the sign assumed to be perceived perfectly), the model provides cognitive micro-

foundations to decreasing sensitivity towards changes in wealth. The degree of decreasing

sensitivity is thereby solely driven by coding noise: a DM who perceives numbers per-

fectly and without noise will simply maximize expected value (although expected utility

maximization over large stakes could enter the model through the decreasing marginal

utility of wealth). An interesting question may thus concern the drivers of noise, and to

what extent noise may be an individual characteristic versus a contextual effect. I will

return to such more general questions in the discussion.

2.4 Sensitivity towards Costs and Benefits

The noisy cognition model of Khaw et al. (2021) micro-founds coding noise on noisy

number perception. That is, however, not the only way of introducing errors. In Viei-
5An interesting question concerns what might happen over large stake variations. The typical em-

pirical observation is increasing relative risk aversion as stakes are scaled up (Holt and Laury, 2002;
Fehr-Duda et al., 2010; Bouchouicha and Vieider, 2017). Under the KLW model, this obtains in the
context where coding noise ν increases in stakes, so that α decreases in stakes. Enke and Shubatt (2023)
document that subjects indeed a) perceive high-stakes choices as more difficult compared to low-stake
choices; and b) make more mistakes for such high-stake choices.
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der (2024), I develop a model of probability weighting based on signal detection theory

(Green, Swets et al., 1966). For 50-50 lotteries, probability weighting drops out and

the model provides micro-foundations for errors in the perception of costs and benefits

of the lottery relative to the sure outcome. Defining errors over costs and benefits has

an important pedigree in neuroscience, being grounded in log-odds coding of favourable

versus unfavourable information (Gold and Shadlen, 2001). Errors occurring at the stage

of the recombination of choice quantities are furthermore thought to be more impor-

tant than purely perceptual errors, given much of the cognitive bottleneck affecting our

processing of real-world information seems to stem from higher-order cognitive processes

(Drugowitsch, Wyart, Devauchelle and Koechlin, 2016; Zheng and Meister, 2024).

Take a 50-50 lottery paying x or else y, and compare this to a sure outcome of c. A

DM wanting to maximize expected value will choose the lottery whenever p (x − c) >

(1− p)(c− y) (obtained by decomposing c = p c+ (1− p) c), i.e. whenever the expected

benefits of taking the lottery exceed the expected costs. Assuming that costs and benefits

are subject to noisy signals and that p = 0.5, the choice rule will entail choosing the lottery

whenever E[ln(x− c)|rb] > E[ln(c− y)|rk], ,where the subscripts to the signals stand for

costs and benefits, respectively. The derivation then proceeds just like above, resulting

in a stochastic choice rule entailing decreasing sensitivity towards costs and benefits.

Describing the noisy signal as directly affecting the log cost-benefits seems efficient in

this context, while being inconsequential from the point of view of empirical predictions.

Such a signal for the ratio, indeed, fits the influential idea in neuroscience that there may

be groups of neurons signalling positive aspects of a decision, and group of “anti-neurons”

signalling the negative aspectes (Gold and Shadlen, 2001; 2002).

Note that errors on single outcomes and errors on costs and benefits may well co-exist,

and one could easily build a more general model combing cost-benefit distortions with

single number distortions as in KLW. Tversky (1969) provides an early discussion of the

generality of comparative setups defined over relative benefits as shown here, since they

nest the different sub-cases described above. Nonetheless, the model deviates from de-

creasing sensitivity in PT—and if taken literally—suggests that PT may be mis-specified

in this respect. Here, the discussion serves mainly as a setup for the later discussion of

probability weighting. It is nevertheless worth noting that the intuition of comparative
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evaluations facilitating the decision process presents some parallels with the models dis-

cussed above, notably with the comparative mechanism underlying DbS, even though the

technical details are different.6

3 Attitudes towards mixed gain-loss lotteries

Somewhat surprisingly, given the importance of the concept of loss aversion in the be-

havioural economics literature, generative accounts for loss aversion appear to be some-

what thinner on the ground than for either decreasing sensitivity or probability weighting.

One reason may be the added complexity arising from mixed domain choices. Here, I

will focus on three main accounts. As usual, I will discuss the general implications of

the models, at times going beyond the specific mechanisms discussed within the papers

proposing them.

3.1 Loss aversion in Robson-Netzer

The Robson-Netzer framework naturally endogenizes the reference point by identifing it

with the peak of the probability density function of consumption opportunities. It does,

however, not automatically produce a discontinuous kink at that point, nor should one

generally expect it to be asymmetric. Netzer (2009) thus discusses a separate mechanism

that could produce such a kink in utility, which passes through a model of how time

delays correlating with the size of consumption may impact choices.

Although not explicitly modelled by Netzer (2009), there is arguably an alternative mech-

anism in the model by which loss aversion could enter the utility function. Given the

mapping between consumption and evolutionary fitness discussed above, Netzer (2009)

shows that consumption utility ought to result from a weighted average of the CDF of

consumption opportunities, F (c), and the fitness function, ψ(c), mapping consumption

into evolutionary fitness. Intuitively, attention should be allocated to where mistakes are

likely to be most frequent, but also to where they may be most impactful in terms of

evolutionary long-term goals, as captured by the mapping ψ.
6An open question concerns the precise mechanism underlying the Bayesian combination of evidence

and prior. One possibility is indeed that this combination happens by combining the samples representing
the coding function with samples from memory, which would indeed suggest a combination of Bayesian
inference processes with a sampling mechanism such as modelled in DbS.
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This opens a new window on how particular attitudes towards losses could arise in the

model. It seems indeed plausible that, when measured against the reference point of

expected consumption, temporary shortfalls in consumption would have a greater impact

on evolutionary fitness than windfall gains. This conclusion follows directly from the

observation that a stable consumption profile is necessary to guarantee the survival of

any offspring. It seems thus plausible that the mapping function ψ would be asymmetric

around expected consumption. It is less clear that this would result in a kink at the

reference point, not least because biologically grounded processes rarely present such

discontinuous changes. A plausible mechanism could be that attention to losses should

increase with the size of the losses, thus resulting in more gradual changes in loss attitudes

as already discussed by Markowitz (1952). Similar intuitions will indeed emerge from the

models I review next, even though they have quite different starting points.

3.2 Decision-by-Sampling and loss attitudes

Other than in the Robson-Netzer framework discussed above, the DbS model is formu-

lated over gains and losses, which are assumed to be perfectly distinguishable. Other than

in PT, however, the model does not generate a dedicated parameter governing choices

amongst mixed gambles: loss attitudes instead emerge from differential utility curvature

for gains versus losses.

Utility in DbS is a product of the relative ranking of outcomes when compared to a

handful of draws from memory. Stewart et al. (2006) show that while gains (credits to

bank accounts) and losses (debits to bank accounts) both follow a power law, the dis-

tribution for losses is shifted closer to 0. That is, few relatively large credits (such as

salary payments or gifts) are usually put towards many small expenses (such as grocery

shopping or bills). The upshot is that a given gain x will usually receive a lower rank

when compared to typical gains than an identical loss x when compared to typical losses.

This will result in sensitivity to a given loss x generally being higher than sensitivity

to a monetarily equivalent gain x. DbS thus predicts dislike of mean-preserving spreads

around 0, although it does so without a dedicated parameter, and purely based on differ-

ential sensitivity towards gains and losses. In addition to generally risk averse choices, we

may thus expect that the degree of risk aversion will increase with stake size—something

that has indeed been documented in the empirical literature (see e.g. Ert and Erev,

13



2013).

Note that PT can of course account for the same type of stake dependence if sensitivity

towards negative changes in wealth is more pronounced than sensitivity towards positive

changes, so that stake effects per se do not contradict PT. Given that parameters are taken

as exogenous and “purely descriptive”, however, it does not ex ante predict such an effect.

The meta-analysis of PT parameters by Imai, Nunnari, Wu and Vieider (2025), however,

lends support to the hypothesis of heightened sensitivity towards losses by showing that

utility for losses is typically closer to linearity than utility for gains. Bouchouicha, Li and

Vieider (2025) (who conduct one of several empirical tests of DbS, reviewed below) thus

coined the term loss-sensitivity to describe this specific mechanism.

3.3 Noisy Cognition and Attitudes towards Losses

Somewhat uniquely amongst the neuro-biologically founded models discussed here, the

noisy cognition model of Khaw et al. (2021) provides cognitive micro-foundations for a

separately defined kink in the utility function at the origin. Just like in DbS, that origin

is identified with the status quo of (nominal) 0, since gains and losses are assumed to be

perfectly discriminated. The model can thus account for loss aversion in the PT sense of a

loss aversion parameter λ > 1, while at the same time detailing under what circumstances

such loss aversion ought to be observed. It does, however, also incorporate a separate

mechanism for loss-sensitivity, thus approaching PT in its richness.

Take a 50-50 gamble offering a gain G or else a loss L as a running example. Other than

for the general case described above, the model of KLW and my own model (Vieider,

2024) coincide for this special case. Gains and losses will be subject to noisy neural

encoding, so that rg ∼ N (ln(G), ν2g ) and rℓ ∼ N (ln(L), ν2ℓ ). In the model’s most general

version, the two signals will then be decoded with separate priors for gains and losses:

ln(G) ∼ N (µg, σ
2
g) and ln(L) ∼ N (µℓ, σ

2
ℓ ). The stochastic choice rule will thus look as

follows:

Pr[(G, 0.5;L) ≻ 0] = Φ

α ln(G)− β ln(L) + (1− α)µg − (1− β)µℓ√
ν2gα

2 + ν2ℓ β
2

 . (1)

where Φ as usual represents the standard normal CDF, and where α ≜
σ2
g

σ2
g+ν2g

and β ≜

14



σ2
ℓ

σ2
ℓ+ν2ℓ

can be thought of as discriminability parameters for gains and losses, respectively

capturing how accurately the true causes (the gains and losses constituting the choice

primitives) are reflected in choice.7

To illustrate how the model can produce a kink in utility, let λ ≜ exp[(1−β)µℓ−(1−α)µg].

Substituting ln(λ) into the numerator and exponentiating it, one can see that acceptance

proportions of the gamble are predicted to be proportional to Gα − λLβ. This provides

cognitive micro-foundations for loss aversion as modelled in PT. Loss aversion in the

sense of λ > 1 will then occur whenever (1 − β)µℓ > (1 − α)µg. Loss aversion thus

requires expected losses to exceed expected gains.8 Although such a motive could have

been hardwired by nature, the optimality of such a mechanism in evolutionary terms is

questionable. For one, gains tend to be larger than losses on average both in experiments

and in the real world (think about the levels of growth in per capita income humans have

experienced over the last 400 years or so). Hardwiring a prior expectation may further

limit learning, and thereby inhibit the adaptive mechanism that is the main tool provided

in the model to overcome limitations arising from biological constraints to information

processing.

The model also enshrines cognitive micro-foundations for loss-sensitivity. Loss sensitivity

here coincides with β > α, which will occur whenever normalized coding noise for losses

is lower than for gains, i.e. whenever νℓ
σℓ
< νg

σg
. Bouchouicha et al. (2025) show theoreti-

cally that this prediction obtains endogenously from the model whenever more attention

is given to losses than to gains, whereby attention is simply equated with dwelling time

on a particular attribute. More attention to losses than gains in mixed choices is in-

deed supported by experiments measuring dwelling times (Pachur, Schulte-Mecklenbeck,

Murphy and Hertwig, 2018) or using eye-tracking techniques (Hirmas, Engelmann and

Weele, 2024). The model furthermore provides a new lens through which to examine

the celebrated results of Tom, Fox, Trepel and Poldrack (2007). Combining behavioural

with brain-scanning data, the latter showed that negative neural activity decreases more

markedly with the size of the loss than neural activations increase with the size of the gain.
7I here use the means of the priors, thereby slightly deviating from the derivation in Khaw et al.

(2021). The difference arises from first logging the choice rule, and here serves mainly to simplify the
formal setup.

8What I mean by this is that the expectation incorporated in the prior for losses exceeds that for
gains, µℓ > µg. This condition rests on the additional assumtion that—a least for most individuals—
(1− β) ≤ (1− α). I will discuss the rationale underlying this assumption shortly.
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Neural activation differentials were further highly correlated with acceptance decisions of

mixed gambles. These results thus lend direct support to the notion of loss-sensitivity.

The discussion of positive versus negative activations further literally fits the idea of

neurons versus anti-neurons proposed by Gold and Shadlen (2001).

The intuition of “increased attention to losses” thus emerges as a common element from

the three modelling approaches discussed in this section, even though it emerges from

rather different mechanisms. This shows how evolutionary, neural coding, and statistical

frequency approaches are much more similar to each other than a superficial categoriza-

tion may suggest. As we will see when discussing empirical tests, the subtle differences

in how the models are written will nevertheless allow to empirically discriminate between

at least some of these models.

4 On the origin of probability distortions

We have now examined several models that provide cognitive and evolutionary micro-

foundations for behaviour triggered by changes in wealth. Several of these models also

have extensions specifically targeting probability distortions. Here, I will as usual examine

a subset of these models, while electing to discuss this subset in more depth.

4.1 Probability weighting as a second-best

Probability distortions are not directly included in the Robson-Netzer framework dis-

cussed above. Herold and Netzer (2023), however, present a model where they character-

ize inverse S-shaped probability weighting as an optimal reaction to S-shaped utility. In

this sense, probability-distortions are a “second-best” solution that serves to compensate

for distorted outcome perceptions (see also Steiner and Stewart, 2016, for the notion of

probability distortions as a second-best deriving from optimally distorted signals).

Here, I focus on the characterization of probability weighting in Netzer, Robson, Steiner

and Kocourek (2024). Uniquely amongst the models examined here—which generally

make their case based on simple tradeoffs between binary lotteries under risk—Netzer

et al. (2024) specifically target complex multi-outcome lotteries under uncertainty. They

characterize biased decisions emerging from a combination of frictions in the encoding (or
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measurement) and the decoding (or aggregation) process. A DM will first of all measure

the rewards provided in a given situation. Given a fixed precision in overall signals, this

problem amounts to distributing the signal precision across different states, resulting in

implications similar to those discussed above for decreasing sensitivity.

The aggregation or decoding stage is just as important. For instance, a DM may bun-

dle several states that she sees as somehow similar into one partition of the reward

space, thereby simplifying the decision problem. Even for a risk neutral decision maker,

such bundling will inevitably result in behavioural deviations from expected value max-

imization. For instance, if several extreme outcome scenarios—which will typically have

relatively small probabilities attached to them—are bundled into one partition and at-

tributed the most extreme reward, then DMs will oversample from that partition, i.e.

allocate too much attention to it. The consequence will then be that such extreme events

are overweighted relative to more commonly observed events, yielding the canonical in-

verse S-shaped probability distortions.9

The model of Netzer et al. (2024) ultimately unifies and generalizes previous accounts in

the same model family. When the encoding function is allowed to optimally adapt to the

distribution of rewards (in an ancestral environment, given the evolutionary motivation of

the model), the outcome distortions and probability distortions are jointly optimal. The

optimality of probability distortions, in particular, rests on the argument that tail events

offering very high or very low rewards typically occur with small probabilities. Given

that the reward-coding strategy is affected by relatively high noise for such tail events,

a DM will often have difficulties reaching decisions involving lotteries with such extreme

events. This, in turn, leads to oversampling for such extreme events and to probability

distortions, which thus compensate for noisiness in reward representations. This mecha-

nism endogenizes probability distortions as a function of reward, which could potentially

account for findings according to which probability distortions become more extreme as

stakes increase (Rottenstreich and Hsee, 2001; Bouchouicha and Vieider, 2017).
9The examples in Netzer et al. (2024) typically use real world scenarios, and effects of sampling are

presented as “subjective probabilities” deviating from “objective probabilities”. From a PT perspective,
this may seem as a mechanism of belief formation, rather than a mechanism of probability distortion.
Note, however, that from the perspective of this model—and indeed from the perspective of most of the
models presented here—this distinction is not meaningful, since even objectively given and described
probabilities are subjective “beliefs” given their noisy perception. I will return to this point in the
discussion.
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4.2 Likelihood frequency and likelihood distortions

DbS contains a mechanism that attributes inverse S-shaped probability distortions to the

distribution of probabilities experienced in the environment. In particular, Stewart et al.

(2006) argue that—in several contexts—small and large probabilities are more frequent

than intermediate probabilities. This, in turn, implies that small probabilities and large

probabilities will, on average, be ranked more accurately than intermediate probabilities.

By the same arguments used above, such distributions would then entail inverse S-shaped

probability distortions.

Frydman and Jin (2023) propose a more sophisticated version of the same argument. In

their model, learned frequency distributions of probabilities enshrined in a Bayesian prior

serve to optimally adapt noise in probability perceptions to the expected circumstances.

Basing themselves on the efficient coding model of Heng, Woodford and Polania (2020),

coding noise should then be larger over intermediate ranges than for extreme probabilities

if DMs have a U-shaped prior. This, in turn, will result in likelihood-insensitivity over

intermediate probability ranges. Just like Decision-by-Sampling, the model thus predicts

that probability weighting should change as a function of the frequency with which small

and large versus intermediate probabilities are observed and with the frequency of small

versus large probabilities.

The predictions are interesting for a number of reasons. For one, reducing coding noise

for small and large probabilities in the binomial setup used for the model implies that

encoding very small and very large probabilities precisely will be very expensive in terms

of cognitive resources required due to the skewed nature of the binomial (or Beta) distri-

bution. Given the fixed cognitive resources setup they inherit from Heng et al. (2020),

the U-shape in the prior ought to be quite accentuated to make such a strategy optimal.

The prediction is exactly the opposite of the one by Zhang, Ren and Maloney (2020).

The latter model a fixed signal bandwidth, which results in extreme probabilities being

shrunk towards the end points of that bandwidth, and thus treated as less extreme than

they truly are in choice. Probability distortions then result from extreme noise affecting

the smallest and largest probabilities—the exact opposite of the prediction by Frydman

and Jin (2023).

18



4.3 Probability Distortions as Optimal Bayesian Inference

A popular probability weighting function due to Goldstein and Einhorn (1987) takes the

form w(p) = δpγ

δpγ+(1−p)γ
. This functional form has a particularly intuitive interpretation

in its linear in log-odds (LLO) form, characterized by Gonzalez and Wu (1999):

ln

(
w(p)

1− w(p)

)
= γ ln

(
p

1− p

)
+ ln(δ). (2)

In this form, values of γ < 1, which takes the form of a power to the odds, can directly be

seen to compress the odds towards 1 (with γ > 1 having the opposite effect). The intercept

term ln(δ) further modifies the fixed point towards which the log-odds are compressed

(i.e. the elevation of the log-odds function when the log-odds are 0, i.e. for p = 0.5).

Zhang and Maloney (2012) provide an early discussion of how such a function can obtain

from a weighted combination of the stimulus and a Bayesian prior mean.10

In Vieider (2024), I propose a Bayesian Inference Model (BIM) of probability weighting

that builds on the Bayesian inference framework used by Khaw et al. (2021), but that

is strictly seen not a generalization of that model because of outcome distortions being

defined over costs and benefits as detailed above. An important characteristic is that the

model provides an integrated perspective in which both probabilities and outcomes (costs

and benefits) are noisily perceived. A further distinguishing characteristic of the model

is that—other than the models reviewed previously in this section—this model is geared

explicitly towards binary choice. The reason for this is that, under the Bayesian Inference

perspective, binary choices and choice lists or valuation tasks require separate models.

This is the true sense in which these are process models: while the neuro-cognitive process

used across different contexts remains the same, the way this process is applied depends

fundamentally on the characteristics of the choice situation.11

Take a simple tradeoff between a binary lottery (x, p; y) and a sure outcome c. Using the

optimal choice rule already discussed above generalized to any probability p, I assume
10Zhang and Maloney (2012) show empirical how such log-odds representations are pervasive, providing

a good empirical fit not only to decision patterns under risk and uncertainty, but also to belief formation
in a variety of contexts (see also Enke and Graeber, 2023). Zhang et al. (2020) augment this setup by a
stylized noisy signal model, where probabilities in intermediate ranges are coded perfectly, but extreme
probabilities drop out of the signal space and are thus perceived as less extreme than they truly are.

11Khaw, Li and Woodford (2023) and Bouchouicha et al. (2024) independently and simultaneously
developed models of probability weighting in valuation tasks, to be further discussed in the review of
empirical predictions and tests below.
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that the mind trades off the log-odds against the log cost-benefits. Just like for the

cost-benefits, the log-odds are noisily coded by a signal rp ∼ N (ln
(

p
1−p

), ν2p

)
. Decoding

this signal by combination with a Bayesian prior ln( p
1−p

) ∼ N (ln(η), σ2), and taking

the expectation over many repetitions of an identical probability p, yields the average

observable response to the choice primitive p:

E
[
E
[
ln

(
p

1− p

) ∣∣ rp] ∣∣ p] =
σ2

ν2p + σ2
ln

(
p

1− p

)
+

ν2p
ν2p + σ2

ln(η). (3)

Defining γ ≜ σ2

ν2p+σ2 and δ ≜ η1−γ yields a function identical to the LLO probability

weighting function from which we started. Likelihood-insensitivity here has a cognitive

interpretation, and is driven by the noise in probability perception (possibly capturing

an imprecise notion of what a probability of e.g. 1/8 truly means, an intuition that can be

tested). To reach a decision, this inference can now be stochastically traded off against

the cost-benefit perceptions derived above.

It is important to spell out that this is not a “just-so-story” of what might underlie prob-

ability distortions. The model gives a precise characterization of probability weighting in

terms of cognitive noise. In Oprea and Vieider (2024), we adapt the model to a sampling

context and show that it explains the description-experience gap. The starting point

is to characterize the rather abstract mental signal rp, and to obtain a parallel notion

in a setting where probabilities need to be learned by sampling from unknown options.

Assume that subjects are sampling from a binary lottery. Let α =
∑N

i=1 si be the count

of successes (draws of the prize x) in N draws from the lottery, and β =
∑N

i=1(1 − si)

the count of failures (draws of failures y). We can then characterize probabilistic beliefs

about p at any given stage as being described by a Beta distribution parameterized by

the count of successes and failures, Be(α, β). Using the logit-normal distribution derived

by Atchison and Shen (1980), the mean in log-odds space will be given by ln(α
β
), and

noise will be given by ν2p = 𭟋′(α) + 𭟋′(β), where 𭟋′ is the trigamma function. Note

that the sampling framework can also be applied to description-based choice. The only

difference is that parameters like α and β will now characterize “mental samples”, which

can be thought of as neuronal firing rates or action potentials.
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4.4 Explaining the Ellsberg paradox

The explanations proposed above were specifically tailored to explaining behaviour under

risk. It is, however, straightforward to generalize the Bayesian inference setup above to

explain ambiguity attitudes and the Ellsberg (1961) paradox. I will briefly illustrate this

for the Ellsberg 2-colour problem following the model of L’Haridon, Oprea, Polania and

Vieider (2023).

The model builds on the sampling framework introduced above. Let the ambiguous

probability be encoded by Be(αa, βa) and the risky probability by Be(αr, βr). Following

arguments of colour exchangeability as presented by Raiffa (1961), let us assume that

decision-makers actually recognize the mean probability in the two urns to be the same,

so that αa

αa+βa
= αr

αr+βr
. If DMs are less certain of their assessment of the ambiguous

probability, in the sense that the concentration of the distribution is smaller for the

ambiguous urn, i.e. αa + βa < αr + βr, this will result in increased coding noise for the

ambiguous option relative to the risky, i.e. νa > νr. Further parsimoniously assuming a

common prior N (µ, σ2) yields the following stochastic choice equation:

Pr[pr(x) ≻ pa(x)] = Φ

(ρ− γ)×
[
ln

(
p

1−p

)
− µ

]
√
λ−1
r ρ2 + λ−1

a γ2

 , (4)

where ρ and γ are the Bayesian evidence weights for risk and ambiguity, and a defined

as ρ ≜ σ2

σ2+ν2r
, and γ ≜ σ2

σ2+ν2a
.

The model has a few remarkable characteristics. Starting from an intuition not unlike

the one underlying multiple-prior models (Gilboa, 1987; Ghirardato and Marinacci, 2002),

ambiguity aversion obtains from risk aversion in the prior, captured by µ < 0. At the same

time, however, the reduced confidence in the ambiguous probability results in likelihood-

dependence of ambiguity attitudes much as documented in PT. Under risk, the model

naturally falls back to probability distortions generated by less-than-perfect coding of

objective probabilities, which will occur as long as αr, βr < ∞. Risk is thus not not an

end-point in the continuum of degrees of uncertainty, but may well occupy an intermediate

position.
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5 Choice stochasticity

PT is a deterministic model: if one can measure the preferences of a DM, one ought to

also be able to predict all future choices of that DM. Although an error model needs to

be attached to PT to empirically recover its parameters, such error models have received

little attention in the PT literature. Error models added to PT have thus typically been

chosen independently, often to reflect zero-mean ‘white noise’ processes. Modelling errors

as completely independent of the decision process may, however, produce complications,

as detailed e.g. by Wilcox (2011) and Apesteguia and Ballester (2018). The details here

may further depend on the choice setup used for the measurement—another issue on

which PT is silent, given its universalist aspirations.

Almost all of the generative accounts discussed above (with the exception of Glimcher

and Tymula, 2023) contain some mechanism endogenizing noise. Even though the specific

aspects from where noise arises differ between models, a prediction emerging from all

models is that noise will generally be more important in regions of stimuli that are less

frequently encountered. Here, I present a brief overview of how errors arise in the main

modelling paradigms reviewed above.

Errors in Robson-Netzer

Errors in Robson-Netzer arise from the distribution of the thresholds at which jumps

in just-noticeable-differences in utility become detectable. This happens because utility

takes the form of a step function (even though the number of steps can potentially be

very large). Intuitively, any two consumption levels falling between two subsequent steps

receive identical utility. The choice between them is thus predicted to be random.

Given that differences between consumption thresholds for which changes in utility are

detected will be an increasing function of the distance to the peak of the probability

density function of consumption, errors will be larger for rarely-encountered consumption

ranges. A criticism that has been voiced about the formal model setting is that small

increments in consumption will be undetectable when they fall into the interior of the

interval between two threshold, but identical changes in consumption might cause jumps

if they are added to consumption levels close to a threshold. Such an interpretation,

however, may be too literal in a stylized modelling setting such as this. The fact that
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most results are obtained in the limit as the number of thresholds becomes infinitely large

furthermore suggests that this problem may be minor in practice.

Sampling-based errors

Just like consumption opportunities in the Robson-Netzer framework, monetary gains

and losses in DbS are perfectly perceived. Noise will, however, arise in the process of

utility assignment. In particular, the source of noise now stems from the low number of

samples taken from the distribution of outcomes in memory, which results in the rank of

the outcomes to be assessed being measured with low fidelity. Formally, the errors in the

model take the form of a draw from a binomial distribution, and are directly attached to

the utility of the outcomes, thus resulting in a random utility model.

While the error term naturally arises from the sampling process (and is in this sense

endogenous to the model), it is assumed to be independent from the outcomes to be

assessed. The implication of this is that, once more, the error frequency should increase

for outcomes falling far from the typical distribution to which a decision maker is adapted,

regardless of whether they are smaller or larger. This happens because extreme outcomes

that fall relatively close together in the distribution are likely to receive similar rankings.

The error term is then more likely to overwrite any differences in ranking than would

happen for outcomes falling into the middle of the habituated distribution, where rank

assignment will be more accurate. At the extreme, choices between unusual quantities

may thus converge towards almost random behaviour.

Note that this provides cognitive foundations for the behaviour of the random utility

model characterized by Apesteguia and Ballester (2018). Other than in their charac-

terization, where the resulting stochastic non-monotonicities are an undesirable feature

of a statistical estimator, in DbS they are a natural corollary of difficulties in assign-

ing utilities to outcomes. Whereas for very small ranks (strong concavity of utility) the

predictions of the two approaches coincide, DbS makes similar predictions for unusually

large outcomes, where choice should once again converge towards randomness. This is a

prediction that is not shared by the purely statistical characterization of Apesteguia and

Ballester (2018), thus providing a potential test for the stochastic choice predictions of

DbS.
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Coding noise versus decision noise in Bayesian inference

Bayesian inference requires a more nuanced discussion of errors, not least because there

are different types of errors in the model. The first category of errors is simply given

by coding noise—the inverse of the precision with which choice primitives are neurally

encoded. As a general rule, regression to the mean will increase in the weighted distance

of a stimulus to the expected stimulus, given that Bayesian shrinkage is a function of,

inter alia, the prediction error, x−µ. In addition, coding noise itself should be expected to

adapt to the distribution of stimuli expected in the environment—a phenomenon referred

to as efficient coding (see e.g. Heng et al., 2020, for a model of efficient coding in the

context of noisy perception; see Frydman and Jin, 2022, for an application). While only a

subset of the models reviewed above represent noise adaptation explicitly, such adaptation

can nevertheless be seen as a general feature of these models. For instance, while Khaw

et al. (2021) discuss as-if utility incorporating constant relative risk aversion, allowing

for coding noise to increase for larger (and less commonly experienced) numerical stakes

results in a prediction of increasing relative risk aversion.

Some complications, however, may arise in other model specifications. For instance, in

the probability weighting model of Vieider (2024), regression to the mean of the Bayesian

prior will depend on the interplay between coding noise for probabilities and coding noise

for cost-benefits (where coding noise is to be understood as measured relative to the

variance of the prior). In a dynamic context where coding noise may adapt, this raises

a number of potentially interesting but so far unaddressed questions of how the different

types of coding noise will adapt, under which circumstances attention may shift from one

dimension to the other, and whether and to what extent existing correlations in choice

stimuli may be correctly reflected in the correlations of noisy signals (see e.g. Natenzon,

2019, on a model exploiting noise correlations in a different context).

The Bayesian inference model is unique amongst the models discussed here in that it does

not predict an unqualified increase in decision noise (i.e. inconsistencies actually observed

in choices) for stimuli falling far from the expected range. The reason for this can be

found in the intuition underlying the optimality of the Bayesian estimator, which entails

that decision noise is a non-monotonic function of coding noise. This can most easily be

shown in the one-dimensional model of Khaw et al. (2021). For that particular model,
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the maximimal decison noise will be observed when the ratio of the SDs of the coding

noise parameters of the prior is equal to 1, i.e. for ν
σ
= 1. For values ν < σ, inferences are

fairly accurate, and trial-to-trial variation resulting from draws of independent signals

from the likelihood will thus be less important. For values ν > σ, however, the best

reaction to the large coding noise is to increasingly rely on the prior in decoding, which

again will reduce decision noise and result in more consistent behaviour. The upshot of

this is that the models of Khaw et al. (2021) and Vieider (2024) do not present the non-

monotonicities in stochastic choice characterized by Apesteguia and Ballester (2018): as-if

utility and probability weighting are tightly linked to the stochastic model, thus resulting

in a monotonic stochastic choice function.

6 The state of the empirical evidence

Even while providing cognitive micro-foundations for PT-like behaviour, many of the

models presented in this chapter make distinctive predictions that can be used to dis-

tinguish them from PT. That being said, not all models are created equal, in that the

predictions of some are more specific, and hence more testable, than others. This is indeed

natural for models formulated at different levels of abstraction. It does, however, make

it more difficult to distinguish between predictions that are common to the models, and

predictions that could help discriminate between the generative models themselves. Here,

I will attempt a review of the empirical evidence, with particular attention to elements

separating the models from PT, and from each other.

6.1 General tests of cognitive frictions

Several papers have tested general implications of noisy cognition. Enke and Graeber

(2023) show probability distortions, conceptualized as regression to the mean, to corre-

late with answers to a survey question asking subjects how certain they are about their

choice (see also Enke, Graeber, Oprea and Yang, 2024, for a paper showing that similar

“behavioural attenuation” is at work across a large variety of contexts). Oprea (2024)

presents a setup in which rewards are described by the contents of 100 boxes. A lottery

is then represented by a random draw from 100 boxes containing different rewards. He

then proceeds to creating a situation in which the complexity of the choice situation is
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maintained, but the risk is eliminated. In particular, he presents subjects with repre-

sentationally identical situations in which the payment is based on the “average box”, so

that the boxes with different reward magnitudes contain a sure amount represented in

a complex fashion. He documents virtually identical “probability distortions” across the

two situations, thus showing that what has traditionally been thought of as risk attitudes

or preferences may actually reflect (at least in part) attitudes towards complexity.

Garagnani and Vieider (2025) test the implications of several of the models above specif-

ically with regards to their predictions about stochastic choice. Other than for risk-

taking in general—where the predictions from different (classes of) models often diverge

significantly—virtually all of the models examined predict that observed decision noise

should be lower in numerical ranges to which subjects are adapted, than for numerical

ranges which are encountered less frequently.Garagnani and Vieider (2025) use natural

variation in currency units as a test for such adaptation. In particular, the purchasing

power of 1 Great British Pound corresponds to that of about 180 Japanese Yen, and the

value of 1 Euro to the value of about 400 Hungarian Florints. To ensure experimental

control and to warrant causal inference, they include 2 conditions in each country: one in

which subjects make decisions over the numerical ranges corresponding to typical daily

purchases in their currency units, and one in which the value is maintained constant,

but the experimental currency units use numerical ranges typical of the other country.

Investigating errors such as stochastic dominance violations in risk taking, they find that

subjects in the UK and Austria make significantly more mistakes for larger numerical

units. In Japan and Hungary, however, the frequency of mistakes is highest in the low

numerical units treatment. This supports the notion that decision-making errors are

not driven purely by magnitude (larger is more complex), but rather by adaptation (un-

usual numerical ranges are more complex, regardless of whether the numbers are small

or large).

In Oprea and Vieider (2024) we provide a test of the noisy cognition explanation of prob-

ability weighting and the description-experience gap that is informed by the Bayesian

model described in some detail in the previous section. Arguably, however, the test goes

beyond the specifics of that model, and generally illustrates how probability weighting

is driven by cognitive frictions affecting the understanding of probabilities. In the base-
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line condition, replicating standard setups used to test description- and experience-based

choice, we replicate the finding that relative risk aversion increases in probabilities when

probabilities are described, but decreases in probabilities when they have to be learned by

sampling. We then introduce a forced sampling treatment into decisions-from-experience,

obliging subjects to sample the complete urn without replacement before taking a deci-

sion. Choice patterns thereupon converge to broadly neo-classical behaviour, exhibiting

mild risk aversion, but no likelihood-dependence.

Crucially, however, this treatment does not close the gap. Neither is it predicted to do so

by the model: after all, standard probability distortions in the description-based paradigm

are also attributed to coding noise. We thus implement a similar treatment for described

choice: even while subjects are shown a full description of the choice options, they are

forced to sample the whole urn without replacement. The force of this test derives from

the observation that under the lens of standard models such as PT the samples provide

no additional information, given that probabilities are modelled as being objectively

perceived. Our noisy coding model, on the other hand, predicts that samples should

contain additional information that will be added to the neurally coded signal. We indeed

find behaviour to converge to mild risk aversion, without any likelihood dependence,

upon forced sampling. Comparing forced sampling in experience- and description-based

settings shows that the description-experience gap has closed entirely.

These tests provide fairly strong evidence that probability weighting and decision noise

are driven by cognitive frictions. They do so in fairly general settings, which arguably

provide support to a whole class of noisy cognition models. Below, I review some tests

that are more specific to individual settings or models.

6.2 Tests of Decision-by-Sampling

DbS is perhaps the most-tested model amongst those I have described, possibly because

it is also one of the first models that have been proposed (with the exception of Robson,

2001a, which however lends itself less easily to specific empirical tests). Tests have indeed

been conducted for all its elements.

Decision-by-Sampling and loss aversion. Several tests have specifically targeted the

emergence of loss aversion. Loss aversion in DbS is a direct result of the differential sensi-
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tivity towards gains and losses in a given range, which results from the relative frequency

of gains and losses of different magnitude in the environment. A natural manipulation

thus consists of experimentally exposing DMs to different ranges of gains and losses.

Walasek and Stewart (2015) jointly manipulated the range of gains and losses in an ex-

periment. Just like predicted by the model, larger losses combined with smaller gains

made loss aversion disappear or even reverse, whereas it resurfaced if subjects were shown

larger gains and smaller losses. A problem with these experiments is that: 1) the adap-

tation and choice stimuli are the same, so that the proper consecutio temporum between

cause and effect is not given. That is, assuming that the results are driven by (perfect)

adaptation requires a degree of magical thinking, since some of the choice stimuli would

have been presented at the outset of the experiment, when subjects have seen few if any

choices (see discussion for a more general critique of the literature arising from this); and

2) the test stimuli are not held constant across treatment conditions.

André and de Langhe (2021b) indeed show that the effects reported by Walasek and

Stewart (2015) are largely due to the use of test stimuli that differ across treatments.

In particular, they show 1) that the same results can be reproduced from synthetic,

simulated data without treatments when tests are executed on the different test stimuli

used by Walasek and Stewart (2015); and 2) that the results disappear in the original data

when the same tests are executed only on stimuli that are common across treatments.

Walasek, Mullett and Stewart (2021) nevertheless show nonparametric differences in the

common stimuli, which did however not assuage their critics (see André and de Langhe,

2021a). As we will see below, the stimuli they use are not well suited to distinguish the

predictions of DbS from models such as the one of Khaw et al. (2021) (which one cannot

hold against them since that model did not yet exist at the time).

Bouchouicha et al. (2025) pitch DbS directly against the noisy cognition model of Khaw

et al. (2021) to determine which of the two models better accounts for acceptance or

rejection decisions of even odds gain-loss gambles. They use an adaptation phase to

manipulate the distribution of either only gains or only losses, followed by a common test

phase. The diagnostic treatment distinguishing between DbS and the noisy cognition

model of Khaw et al. (2021) consists in manipulating the distribution of gains only (this

is done in a pure gain setting, to avoid confounds arising when gains and losses are
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manipulated jointly). Subjects shown large gains in the adaptation phase are predicted

by DbS to be more risk averse than subjects shown small gains, since the size of the

gains in the environment will directly impact the rank attributed to a given gain x in the

common test set. The noisy cognition model, however, predicts the exact opposite: larger

gains in the adaptation phase ought to shift the mean of the prior upwards, and thus

reduce λ (endogenized loss aversion). The data show a clear increase in the acceptance

of mean-preserving spreads around 0, consistent with the noisy cognition model, but in

contradiction to DbS.

Decision-by-Sampling and probability distortions. Stewart, Reimers and Harris

(2014) present systematic experimental manipulations of choice quantities, including sev-

eral manipulations of the probabilities to which subjects are exposed. They then use

parametric estimation methods to show that they can thereby manipulate probability

weighting functions at will in a way that agrees with the predictions of DbS (they report

similar results for utility as well). In a subsequent adversarial collaboration, however,

Alempaki, Canic, Mullett, Skylark, Starmer, Stewart and Tufano (2019) show that the

patterns described by Stewart et al. (2014) are purely an artifact of the (fairly complex)

parametric analysis techniques adopted: when looking at the nonparametric data, none

of the model predictions are supported. At the very least, this leaves the explanation

provided by DbS in limbus in terms of its empirical validity.

A different possibility then consists in directly examining the validity of the underlying

arguments. The different distribution of credits and debits, used by Stewart et al. (2006)

to micro-found decreasing sensitivity towards outcomes and loss aversion, provides solid

foundations on which to build adaptive models, and arguably holds significance beyond

the modelling specifics adopted in the paper (see also discussion below). The data shown

to support probability distortions by Stewart et al. (2006), however, are arguably not

quite as convincing as their quantitative payment data for gains and losses.

Their principal method for assessing probability distributions consists in a) having some

experimental subjects rate the numerical likelihoods entailed by verbal phrases (such as

“most likely”; “usually”; “rarely”, or “almost impossible”); and b) analyzing the frequency

of occurrence of these phrases in natural language. They conclude that phrases describing

very small probabilities and very large probabilities are most frequent. This argument,
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however, relies crucially on the phrases chosen. While the list includes terms such as

“maybe”, “even odds” and “fifty-fifty chance”, it does not include phrases such as “I do

not know”, “it is impossible to predict”, or “no idea”. Applied to binary events such as

rain versus no rain, such phrases are, however, both likely to indicate approximate 50-50

guesses, and to be very frequent (especially so in the English climate).

Another argument they use concerns the purported higher frequency of extreme prob-

abilities in experiments measuring probability weighting. Whether such a bias towards

extreme probabilities in measurement exists is, however, not so clear. While some exper-

iments indeed over-sample from large and small probabilities (Gonzalez and Wu, 1999,

being the example typically cited), many include a multiplicity of intermediate probabil-

ity tasks to produce the stake variation needed for the identification of utility curvature

(L’Haridon and Vieider, 2019). A careful analysis of the universe of PT estimations as a

function of probabilities deployed in the experiment seems desirable here.

6.3 Context-dependence of choices under risk

The models of Khaw et al. (2021) for utility curvature and of Vieider (2024) for prob-

ability weighting are explicitly geared towards binary choice. Applications of the same

cognitive principles to certainty equivalents or valuations will generally produce differ-

ent predictions. Khaw et al. (2023) and Bouchouicha et al. (2024) propose models that

are tailor-made for choice lists or valuation tasks: the predictions of these models differ

markedly from those of the binary choice models. Other models have been empirically

applied to valuation tasks (e.g. Zhang et al., 2020; Frydman and Jin, 2023), but their

more stylized nature and their application purely to the likelihood dimension means that

they do not distinguish between different decision contexts or elicitation frameworks. Fi-

nally, models such as those of Netzer (2009), Herold and Netzer (2023) and Netzer et al.

(2024) are formulated at a higher level of abstraction, and make no predictions on effects

of the specific decision context, either.

What is increasingly clear based on the empirical literature, however, is that the way in

which choices are presented can matter hugely. Bouchouicha et al. (2024) show that prob-

ability distortions obtained using choice lists (certainty equivalents) differ substantially

from probability distortions in binary choice, even while keeping the underlying choices
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identical across contexts. Whereas CEs produce a fourfold pattern of risk attitudes as

discussed in PT, binary choice results in a two-fold pattern of apparent risk attitudes:

risk aversion for gains, and risk seeking for losses. This is accompanied by attenuated

likelihood-insensitivity in binary choice. Based on a meta-analysis they further show that

the same pattern has been present in virtually all PT measurements all along, but has

largely gone undetected due to a focus on structural estimations of PT functionals.

On the one hand, these findings show the limitations arising from the universalist aspira-

tions of PT: models aiming to capture behaviour purely by applying preference functionals

to objectively perceived choice primitives cannot possibly organize this sort of context-

dependence. On the other hand, the results help discriminate between different models

of cognitive frictions. In particular, the Bayesian Inference Framework is unique amongst

the models above in having been tailored from the outset to a specific choice context.

While Vieider (2024) describes probability distortions in a binary choice setup, the mod-

els of Khaw et al. (2023) and Bouchouicha et al. (2024) are explicitly geared towards

probability distortions arising in valuation tasks. Although these two models have been

developed in parallel and independently from each-other (as witnessed by them using a

different formal angle of attack to the problem), they both make very similar predictions,

and they both can account for the discrepancies between choice and valuations described

in Bouchouicha et al. (2024).

This is not to say, however, that these models are the only ones that can account for these

phenomena. Shubatt and Yang (2024) model differences between choice and valuation by

including noise deriving from a tendency towards the center of a choice list or valuation

interval. They thus organize a variety of phenomena, ranging from inversions of prob-

ability weighting when using probability equivalents instead of certainty equivalents12,

to classical preference reversals (Slovic and Lichtenstein, 1968; Lichtenstein and Slovic,

1971). Notice that these same phenomena can be organized also by the models of Khaw

et al. (2023) and Bouchouicha et al. (2024), albeit by different mechanisms. Ultimately,

the jury is still out on which type of cognitive friction may capture this sort of behavioural
12These type of reversals have been known at least since Hershey and Schoemaker (1985). The latter

explained these discrepancies in the context of internal reference points in PT, with the sure amount
in probability-equivalent lists acting as an endogenous reference point. It has, however, been known for
some time that this does not provide a satisfactory explanation of the phenomenon—see e.g. Feldman
and Ferraro (2023) for a recent examination of these issues.
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regularity best, and specific tests designed to be diagnostic of the differences between the

models may be required to answer this question.

6.4 Cognitive and neural correlates of decision noise

As we have seen above, all the models are motivated by some sort of cognitive friction

or limitation. Most of the models furthermore appeal to some sort of neural coding as a

source of (at least part of) these frictions. This opens the field for the hunt of cognitive and

neural correlates of behavioural deviations from economic optimality benchmarks.

Barretto-García, de Hollander, Grueschow, Polania, Woodford and Ruff (2023) investi-

gate the neural and number-discrimination correlates of outcome distortions as modelled

by Khaw et al. (2021). They quantify neural signatures of the precision of number rep-

resentation in parietal cortex, and document correlations between the neural accuracy

indices and numerical discrimination tasks using either clouds-of-dots displays to repre-

sent magnitudes or symbolic representations (Arabic numerals). Since according to the

model of Khaw et al. (2021) such numerical discrimination lies at the heart of risky choice,

they also investigate correlations with risky choice. The neural measures of coding pre-

cision are indeed found to correlate with performance in numerical discrimination tasks.

They also correlate with behavioural risk aversion, both in tasks using non-symbolic and

in tasks using symbolic representations.

Neural correlates have also been studied for attitudes towards mixed gambles. In a

seminal study, Tom et al. (2007) measured neural activation functions while subjects

made accept-reject decisions of binary gain-loss wagers. They showed that deactivations

measured over a range of losses were stronger than activations over a range of gains.

The differential reactions to gains versus losses were furthermore highly predictive of

acceptance decisions of 50-50 gain-loss gambles. This provides neural evidence for the

concept of loss-sensitivity enshrined in the model of Khaw et al. (2021).

The neural results of Tom et al. (2007) suggest that such loss-sensitivity ought to be driven

by increased attention towards losses relative to gains. Pachur et al. (2018) directly test

such an attentional account using a Mouselab paradigm, where subjects have to hover

over different attributes with the mouse to be able to see them. They thereby conceive of

attention as the time spent on a given attribute. Time spent considering losses relative to
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gains is indeed found to be highly predictive of loss aversion parameters estimated in a PT

model. They also exogenously vary attention by showing gains versus losses for different

lengths of time. Although the effects go in the expected direction, thus providing some

causal evidence for the effect of attention, the recoded effects are on the weak side from

both a statistical and a substantive point of view (measured loss aversion hovers around

1 in all cases). Hirmas et al. (2024) further investigate the same issue using rich eye-

tracking data. Bouchouicha et al. (2025) show that a stylized attention model injected

into KLW can capture such attentional effects, whereby the asymmetry in attention to

gains and losses will drive loss-sensitivity.

Bouchouicha et al. (2025) further correlate relative sensitivity towards losses and gains

with measures of cognitive and numerical acuity. Loss-sensitivity—capturing the differ-

ence in attention to losses and gains—is shown to decrease in cognitive ability. They trace

this effect to increased attention towards gains by cognitively more able people, thereby

explaining the opposite correlations of cognitive ability with risk aversion over pure gains

and mixed gambles reported by Chapman, Snowberg, Wang and Camerer (2024). Sim-

ilar correlations of cognitive ability with likelihood-sensitivity have been reported by a

number of papers (see e.g. L’Haridon and Vieider, 2019; Choi, Kim, Lee, Lee et al.,

2022). All of this is indicative that cognitive ability may contribute to determining the

precision of noisy signals overall. Enke and Graeber (2023) document behavioural atten-

uation that is common across risk taking and beliefs, as well as forecasts (see also Zhang

and Maloney, 2012). Behavioural attenuation under risk—in the sense of behaviour that

seems driven by probabilities that lie closer to an intermediate mean than the objective

probabilities suggest, thus resulting in probability weighting—is correlated with answers

given to a simple survey question asking subjects how certain they are of their choice.

This suggests that subjects have some conscious awareness of their cognitive noise.

7 Current limitations and future opportunities

From the extensive if somewhat selective review I have presented in this chapter, it is

clear that all the models agree on some fundamental aspects driving decisions. The first

element consists in cognitive limitations that lead to frictions in the decision-making

process. The second element consists in some way of dealing with the cognitive frictions
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arising in the first step. Usually, this step is represented as being “optimal” . The models

do, however, differ in where the frictions are supposed to arise precisely, how they affect

decisions, and how precisely such frictions are dealt with. They may also differ in terms

of their optimality criteria. It is not always clear by looking at the models where the

differences arise, and which differences may actually matter in terms of the predictions

they make. Here, I first present a discussion of commonalities and differences, and how

they may affect predicted behaviour. Subsequently, I present a more general discussion

of the current limitations of this literature, and of its future promise.

7.1 Models of encoding and models of decoding

It is difficult to find a single dimension along which the models can be classified. An

important dimension nevertheless seems to be the distinction between encoding and de-

coding. Encoding describes the process whereby the choice primitives in the real world

are neurally represented. The decoding subsequently consists in deciphering the infor-

mation content of the codes, and using them towards forming a decision. Note that one

could model additional stages (e.g. distinguishing purely perceptual encoding from re-

combination of choice quantities, all of which may produce noise), and that some models

may not fit this scheme well (possibly because their justification is not explicitly neural).

Many models may further include both stages, but differ with regards to where “the main

action” occurs when it comes to predicting behaviour. This simple dichotomy will nev-

ertheless allow us to start a discussion about the commonalities and differences between

the models discussed above.

A typical example of a model of encoding is provided by Thurstone (1927a), who models

discrimination between two stimuli based directly on the signals representing them. Such

signals will typically be noisy, given that under plausible modelling assumptions one can

show that an infinity of neurons would be needed for perfectly accurate presentations.

The divisive normalization model of Glimcher and Tymula (2023) is an example where

predictions are explicitly based on adaptation of neural firing rates to the stimuli in the

environment. The action therefore derives from optimal noise adaptation, subject to

finite information-processng resources. More recent iterations of efficient coding models,

such as the probability weighting explanation proposed by Frydman and Jin (2023), share

the feature that the main action derives from the neural encoding stage.
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The encoding models discussed above share the common feature that the main action

derives from the neural or sensory apparatus adjusting to reflect the distribution of stimuli

in the environment. This is a feature that they share with the evolutionary setup of

Robson-Netzer, and with the Decision-by-Sampling framework. A special feature these

models have is that outcomes and probabilities are assumed to be perceived perfectly and

without noise. This feature may seem logically at odds with the very motivation of neural

encoding models (although it is a feature that is shared by the explicitly neural model

of Glimcher and Tymula, 2023). Noise nevertheless arises in the attribution of decision

values, such as utilities to outcomes, to such objectively perceived choice primitives. The

observation that the utility-attribution process is once again driven by efficiency concerns

similar to those detailed in the encoding models above justifies classifying these two model

groups alongside each other as models of “efficient coding”.

Decoding models specifically put the action in the decoding process. Encoding is thereby

typically seen as noisy, but noise is often—although not necessarily—treated as exogenous

to the model. This class of models includes notably Bayesian inference (or observer)

models such as the Khaw et al. (2021), Khaw et al. (2023), and Vieider (2024). Here,

coding noise is often treated as uniform over the stimulus space (although this is mostly

a simplifying feature in these models; see e.g. Zhang et al., 2020, for an exception).

While the main action thus derives from the decoding stage, adding optimal adaptation

in encoding to these models can yield additional predictions.

Some models derive their predictions from the interaction of the encoding and decoding

stages. The sampling-based model of Oprea and Vieider (2024)—even though it builds

on and generalizes the model of Vieider (2024)—crucially relies on the endogenization

of coding noise in experience-based choices. It then is the combination of coding noise

and regression to the Bayesian prior mean which drives the endogenous sampling-stopping

rule in the model. The stopping decision, in turn, predicts behaviour. Netzer et al. (2024)

explicitly characterize both the encoding and decoding stages in valuations of lotteries

with a multiplicity of states, and show how noise in encoding and decoding can yield

separate behavioural predictions.
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7.2 Models of adaptation

Considering that almost all models I have reviewed rely on an adaptive mechanism to

counter-balance cognitive bottlenecks, the explicit modelling of adaptation is conspicu-

ously absent from most models (see, however, Glimcher and Tymula, 2023, for a model

that is explicitly adaptive; see also Robson, Whitehead and Robalino, 2023, for a model

of adaptation specific to the Robson-Netzer framework). For instance, empirical tests

of DbS have relied on manipulations of the choice statistics in the environment, but the

extent to which distributions in the immediate experimental environment may add to or

even over-write distributions learned in the real world remains unclear due to the absence

of an explicit model of memory formation. Similar issues occur for the Bayesian observer

models, where learning of the prior has received relatively little attention.

The problems arising from the neglect of learning are bigger than one might at first

think. Given the noisy perception of outcomes, assuming that the environmental stimuli

are learned perfectly will simply not cut it. To the extent that choice primitives (or

their values) are themselves noisily perceived, a perfect learning assumption risks to

result in magical thinking. In particular, any systematic bias in perception will likely

be reflected in learned distributions, although the extent to which this happens, and the

degree of distortion, will depend on the fine details of the process. This is particularly

problematic in models such as DbS and efficient coding, which often fundamentally rely

on the assumption of correct learning of the stimuli in the environment to derive their

predictions of noise adaptation. If learning is not only noisy but systematically biased—

as some of the empirical results in the literature do indeed suggest—then the failure of

this assumption threatens the very core of those models. Building explicit models of such

learning processes should thus be a priority task for future research.

7.3 Cognitive frictions and the status of preferences

Some of the models and empirical results I have presented in this chapter have been

interpreted to imply that stable preferences do not exist. This impression can easily

arise from the focus put on effects arising from complexity, as in ?, or from the optimal

choice rules which constitute the starting point of Khaw et al. (2021) and Vieider (2024),

assuming expected value maximization. This impression, however, is incorrect. The point
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of both the empirical investigations and the models is more accurately that any stable

preferences may not be easily extracted from observed choices, given that they will be

confounded by mistaken inferences arising from noisy cognitive processes.

An interesting question is, nevertheless, what form preferences might take in this frame-

work (and as a consequence, how one could measure them). One possibility is simply to

allow for a standard utility function applied to the objective choice primitives, such as ex-

plicitly discussed by both Khaw et al. (2021) and Vieider (2024). True preferences would

then take the form of decreasing marginal utility of wealth, but would likely not impact

small-stake decisions, which arise purely from noisy cognition (the key point on Khaw et

al. (2021)). In principle, however, even stable, preference-driven utility over small stakes,

such as proposed by Alaoui and Penta (2025), could be integrated into models of noisy

cognition without loss of generality.

Another intriguing possibility is to look for relatively stable components of choice within

the generative frameworks themselves. For instance the mean of the Bayesian prior could

be learned very conservatively in Bayesian Inference Models, reflecting a hierarchical

structure (Friston, 2005) that is learned over a lifetime and changes only slowly based on

noisy inferences. The same holds for environmental distributions of choice stimuli such

as modelled in DbS, where experiences in certain phases of life (e.g. formative years)

could have a disproportionate influence. The great advantage of such an endogenous

account is that it could potentially offer a way to study preference formation—something

the accounts discussed above cannot. That being said, a meaningful discussion of these

problems requires the development of formal models of learning of environmental distri-

butions, which are at present still lacking from the literature.

7.4 Conclusion: Unified foundations of decision-making

Prospect theory has been an extremely successful theory of choice. Over time, however,

some limitations have emerged. I argued that these limitations arise 1) from the univer-

salist aspirations of prospect theory, which prevent it from accounting for the a variety

of procedure invariance violations that have been documented in the empirical literature;

and 2) from the ex post nature of the fitting exercise, which results in a large (and in

extreme cases: infinite) number of ex post parameters, which prevent it from making
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meaningful predictions. In this chapter, I have thus argued for the promise of cognitive

models that endogenize PT-like parameters to overcome both these issues.

The promise of models in the cognitive tradition goes beyond the narrow focus of decisions

under risk I reviewed here. Models such as Bayesian Inference and Efficient Coding rest

on fundamental principles that are thought to underly neural processes in general, thus

unifying the modelling of higher cognitive functions with that of sensori-motor tasks. Very

similar—or at times even identical—models to those described here can furthermore be

used to account for decision-making patterns under certainty, for ambiguity attitudes,

delay-discounting, and possibly even for social interactions. This drive for unification—

jointly with the relative parsimony of the approach—is one of the greatest promises of

the neuro-cognitive approach to decision modelling.

References

Abdellaoui, Mohammed, Aurélien Baillon, Lætitia Placido, and Peter P. Wakker (2011)

‘The Rich Domain of Uncertainty: Source Functions and Their Experimental Imple-

mentation.’ American Economic Review 101, 695–723

Alaoui, Larbi, and Antonio Penta (2025) ‘What’s in a u?’ Technical Report, Universitat

Pompeu Fabra

Alempaki, Despoina, Emina Canic, Timothy L Mullett, William J Skylark, Chris Starmer,

Neil Stewart, and Fabio Tufano (2019) ‘Reexamining how utility and weighting func-

tions get their shapes: A quasi-adversarial collaboration providing a new interpreta-

tion.’ Management Science 65(10), 4841–4862

André, Quentin, and Bart de Langhe (2021a) ‘How (not) to test theory with data: Illus-

trations from walasek, mullett, and stewart (2020).’

(2021b) ‘No evidence for loss aversion disappearance and reversal in walasek and stew-

art (2015).’ Journal of Experimental Psychology: General 150(12), 2659

Apesteguia, Jose, and Miguel A Ballester (2018) ‘Monotone stochastic choice models:

The case of risk and time preferences.’ Journal of Political Economy 126(1), 74–106

Atchison, J, and Sheng M Shen (1980) ‘Logistic-normal distributions: Some properties

and uses.’ Biometrika 67(2), 261–272

Barretto-García, Miguel, Gilles de Hollander, Marcus Grueschow, Rafael Polania, Michael

38



Woodford, and Christian C Ruff (2023) ‘Individual risk attitudes arise from noise in

neurocognitive magnitude representations.’ Nature Human Behaviour 7(9), 1551–1567

Birnbaum, Michael H (1999) ‘Testing critical properties of decision making on the inter-

net.’ Psychological Science 10(5), 399–407

(2008) ‘New paradoxes of risky decision making.’ Psychological review 115(2), 463

Bishop, Christopher M. (2006) Pattern recognition and machine learning, vol. 4 (Springer)

Bossaerts, Peter, Nitin Yadav, and Carsten Murawski (2019) ‘Uncertainty and

computational complexity.’ Philosophical Transactions of the Royal Society B

374(1766), 20180138

Bouchouicha, Ranoua, and Ferdinand M. Vieider (2017) ‘Accommodating stake effects

under prospect theory.’ Journal of Risk and Uncertainty 55(1), 1–28

Bouchouicha, Ranoua, Ryan Oprea, Ferdinand M. Vieider, and Jilong Wu (2024) ‘Is

prospect theory really a theory of choice?’ Technical Report, Ghent University Discus-

sion Papers

Bouchouicha, Ranoua, Yuchi Li, and Ferdinand M. Vieider (2025) ‘Loss-sensitivity versus

loss-aversion.’ Technical Report, Ghent University Discussion Papers

Chapman, Jonathan, Erik Snowberg, Stephanie W Wang, and Colin Camerer (2024)

‘Looming large or seeming small? attitudes towards losses in a representative sample.’

Review of Economic Studies, forthcoming

Choi, Syngjoo, Jeongbin Kim, Eungik Lee, Jungmin Lee et al. (2022) ‘Probability weight-

ing and cognitive ability.’ Management Science, forthcoming 68(7), 4755–5555

Dehaene, Stanislas (2003) ‘The neural basis of the weber–fechner law: a logarithmic

mental number line.’ Trends in cognitive sciences 7(4), 145–147

(2011) The number sense: How the mind creates mathematics (OUP USA)

Drugowitsch, Jan, Valentin Wyart, Anne-Dominique Devauchelle, and Etienne Koechlin

(2016) ‘Computational precision of mental inference as critical source of human choice

suboptimality.’ Neuron 92(6), 1398–1411

Ellsberg, Daniel (1961) ‘Risk, Ambiguity and the Savage Axioms.’ Quarterly Journal of

Economics 75(4), 643–669

Enke, Benjamin, and Cassidy Shubatt (2023) ‘Quantifying lottery choice complexity.’

Technical Report, Mimeo

Enke, Benjamin, and Thomas Graeber (2023) ‘Cognitive uncertainty.’ Quarterly Journal

39



of Economics

Enke, Benjamin, Thomas Graeber, Ryan Oprea, and Jeffrey Yang (2024) ‘Behavioural

attenuation.’ Mimeo

Ert, Eyal, and Ido Erev (2013) ‘On the descriptive value of loss aversion in decisions

under risk: Six clarifications.’ Judgment and Decision making 8(3), 214–235

Fechner, Gustav Theodor (1860) (Kessinger’s Legacy Reprints)

Fehr-Duda, Helga, Adrian Bruhin, Thomas F. Epper, and Renate Schubert (2010) ‘Ra-

tionality on the Rise: Why Relative Risk Aversion Increases with Stake Size.’ Journal

of Risk and Uncertainty 40(2), 147–180

Feldman, Paul J, and Paul J Ferraro (2023) ‘A certainty effect for preference reversals

under risk: Experiment and theory’

Friedman, Daniel (1989) ‘The s-shaped value function as a constrained optimum.’ The

American Economic Review 79(5), 1243–1248

Friedman, Milton, and L. J. Savage (1948) ‘The Utility Analysis of Choices Involving

Risk.’ Journal of Political Economy 56(4), 279–304

Friston, Karl (2005) ‘A theory of cortical responses.’ Philosophical transactions of the

Royal Society B: Biological sciences 360(1456), 815–836

Frydman, Cary, and Lawrence J Jin (2022) ‘Efficient coding and risky choice.’ Quarterly

Journal of Economics 136, 161–213

(2023) ‘On the source and instability of probability weighting.’ Technical Report, Na-

tional Bureau of Economic Research

Garagnani, Michele, and Ferdinand M. Vieider (2025) ‘Economic consequences of numer-

ical adaptation.’ Psychological Science, forthcoming

Ghirardato, P, and M Marinacci (2002) ‘Ambiguity made precise: A comparative foun-

dation.’ Journal of Economic Theory 102, 251–289

Gilboa, Itzhak (1987) ‘Expected utility with purely subjective non-additive probabilities.’

Journal of Mathematical Economics 16(1), 65–88

Glimcher, Paul W, and Agnieszka A Tymula (2023) ‘Expected subjective value theory

(esvt): A representation of decision under risk and certainty.’ Journal of Economic

Behavior & Organization 207, 110–128

Gold, Joshua I, and Michael N Shadlen (2001) ‘Neural computations that underlie deci-

sions about sensory stimuli.’ Trends in cognitive sciences 5(1), 10–16

40



(2002) ‘Banburismus and the brain: decoding the relationship between sensory stimuli,

decisions, and reward.’ Neuron 36(2), 299–308

Goldstein, W, and H Einhorn (1987) ‘Expression Theory and the Preference Reversal

Phenomena.’ Psychological Review 94, 236–254

Gonzalez, Richard, and George Wu (1999) ‘On the Shape of the Probability Weighting

Function.’ Cognitive Psychology 38, 129–166

Green, David Marvin, John A Swets et al. (1966) Signal detection theory and psy-

chophysics, vol. 1 (Wiley New York)

Heng, Joseph A, Michael Woodford, and Rafael Polania (2020) ‘Efficient sampling and

noisy decisions.’ Elife 9, e54962

Herold, Florian, and Nick Netzer (2023) ‘Second-best probability weighting.’ Games and

Economic Behavior 138, 112–125

Hershey, John C., and Paul J. H. Schoemaker (1985) ‘Probability versus Certainty Equiv-

alence Methods in Utility Measurement: Are They Equivalent?’ Management Science

31(10), 1213–1231

Hertwig, Ralph, Greg Barron, Elke U Weber, and Ido Erev (2004) ‘Decisions from experi-

ence and the effect of rare events in risky choice.’ Psychological science 15(8), 534–539

Hirmas, Alejandro, Jan B Engelmann, and Joël van der Weele (2024) ‘Individual and

contextual effects of attention in risky choice.’ Experimental Economics pp. 1–28

Holt, Charles A., and Susan K. Laury (2002) ‘Risk Aversion and Incentive Effects.’ Amer-

ican Economic Review 92(5), 1644–1655

Imai, Taisuke, Salvatore Nunnari, Jiling Wu, and Ferdinand M. Vieider (2025) ‘Meta-

analysis of prospect theory parameters.’ Working Paper

Kahneman, Daniel, and Amos Tversky (1979) ‘Prospect Theory: An Analysis of Decision

under Risk.’ Econometrica 47(2), 263 – 291

Khaw, Mel Win, Ziang Li, and Michael Woodford (2021) ‘Cognitive imprecision and

small-stakes risk aversion.’ The Review of Economic Studies 88(4), 1979–2013

(2023) ‘Cognitive imprecision and stake-dependent risk attitudes.’ Technical Report

L’Haridon, Olivier, and Ferdinand M. Vieider (2019) ‘All over the map: A worldwide

comparison of risk preferences.’ Quantitative Economics 10, 185–215

L’Haridon, Olivier, Ryan Oprea, Rafael Polania, and Ferdinand M. Vieider (2023) ‘Cog-

nitive foundations of ambiguity atttitudes.’ Mimeo

41



Lichtenstein, Sarah, and Paul Slovic (1971) ‘Reversals of preference between bids and

choices in gambling decisions.’ Journal of experimental psychology 89(1), 46

Markowitz, Harry (1952) ‘The Utility of Wealth.’ Journal of Political Economy

60(2), 151–158

Mosteller, Frederick, and Philip Nogee (1951) ‘An experimental measurement of utility.’

Journal of political economy 59(5), 371–404

Natenzon, Paulo (2019) ‘Random choice and learning.’ Journal of Political Economy

127(1), 419–457

Netzer, Nick (2009) ‘Evolution of time preferences and attitudes toward risk.’ American

Economic Review 99(3), 937–55

Netzer, Nick, Arthur Robson, Jakub Steiner, and Pavel Kocourek (2024) ‘Risk percep-

tion: measurement and aggregation.’ Journal of the European Economic Association

p. jvae053

Oprea, Ryan (2024) ‘Decisions under risk are decisions under complexity.’ American

Economic Review

Oprea, Ryan, and Ferdinand M. Vieider (2024) ‘Minding the gap: On the origins of the

description-experience gap.’ Working Paper

Pachur, Thorsten, Michael Schulte-Mecklenbeck, Ryan O Murphy, and Ralph Hertwig

(2018) ‘Prospect theory reflects selective allocation of attention.’ Journal of experi-

mental psychology: general 147(2), 147

Raiffa, Howard (1961) ‘Risk, Ambiguity and the Savage Axioms: Comment.’ Quarterly

Journal of Economics 75(4), 690–694

Robson, Arthur J (2001a) ‘The biological basis of economic behavior.’ Journal of Eco-

nomic Literature 39(1), 11–33

(2001b) ‘Why would nature give individuals utility functions?’ Journal of Political

Economy 109(4), 900–914

Robson, Arthur J, Lorne A Whitehead, and Nikolaus Robalino (2023) ‘Adaptive utility.’

Journal of Economic Behavior & Organization 211, 60–81

Rottenstreich, Yuval, and Christopher K. Hsee (2001) ‘Money, Kisses, and Electric

Shocks: On the Affective Psychology of Risk.’ Psychological Science 12(3), 185–190

Shubatt, Cassidy, and Jeffrey Yang (2024) ‘Similarity and comparison complexity.’ arXiv

preprint arXiv:2401.17578

42



Slovic, Paul, and Sarah Lichtenstein (1968) ‘Relative importance of probabilities and

payoffs in risk taking.’ Journal of experimental psychology 78(3p2), 1

Steiner, Jakub, and Colin Stewart (2016) ‘Perceiving prospects properly.’ American Eco-

nomic Review 106(7), 1601–31

Stewart, Neil, Nick Chater, and Gordon DA Brown (2006) ‘Decision by sampling.’ Cog-

nitive psychology 53(1), 1–26

Stewart, Neil, Stian Reimers, and Adam JL Harris (2014) ‘On the origin of utility, weight-

ing, and discounting functions: How they get their shapes and how to change their

shapes.’ Management Science 61(3), 687–705

Thurstone, Louis L (1927a) ‘A law of comparative judgment.’ Psychological review

34(4), 273

(1927b) ‘Psychophysical analysis.’ The American Journal of Psychology 38(3), 368–389

Tom, Sabrina M., Craig R. Fox, Christopher Trepel, and Russell A. Poldrack (2007) ‘The

Neural Basis of Loss Aversion in Decision-Making Under Risk.’ Science 315(5811), 515–

518

Tversky, Amos (1969) ‘Intransitivity of preferences.’ Psychological review 76(1), 31

Vickrey, William (1945) ‘Measuring Marginal Utility by Reactions to Risk.’ Econometrica

13(4), 319

Vieider, Ferdinand M. (2024) ‘Decisions under uncertainty as bayesian inference on choice

options.’ Management Science pp. 9014–9030

Walasek, Lukasz, and Neil Stewart (2015) ‘How to make loss aversion disappear and re-

verse: tests of the decision by sampling origin of loss aversion.’ Journal of experimental

psychology: general 144(1), 7

Walasek, Lukasz, Timothy L Mullett, and Neil Stewart (2021) ‘Acceptance of mixed

gambles is sensitive to the range of gains and losses experienced, and estimates of

lambda (λ) are not a reliable measure of loss aversion: Reply to andré and de langhe

(2021).’

Wilcox, Nathaniel T. (2011) ‘‘Stochastically more risk averse:’ A contextual theory of

stochastic discrete choice under risk.’ Journal of Econometrics 162(1), 89–104

Woodford, Michael (2012) ‘Prospect theory as efficient perceptual distortion.’ American

Economic Review 102(3), 41–46

Wu, George, and Alex B. Markle (2008) ‘An Empirical Test of Gain-Loss Separability in

43



Prospect Theory.’ Management Science 54(7), 1322–1335

Wulff, Dirk U, Max Mergenthaler-Canseco, and Ralph Hertwig (2018) ‘A meta-analytic

review of two modes of learning and the description-experience gap.’ Psychological

bulletin 144(2), 140

Zhang, Hang, and Laurence T Maloney (2012) ‘Ubiquitous log odds: a common repre-

sentation of probability and frequency distortion in perception, action, and cognition.’

Frontiers in neuroscience 6, 1

Zhang, Hang, Xiangjuan Ren, and Laurence T Maloney (2020) ‘The bounded ratio-

nality of probability distortion.’ Proceedings of the National Academy of Sciences

117(36), 22024–22034

Zheng, Jieyu, and Markus Meister (2024) ‘The unbearable slowness of being: Why do we

live at 10 bits/s?’ Neuron

44


	Introduction
	Decreasing sensitivity towards gains and losses
	On the evolutionary origins of S-shaped utility
	Comparative value and decreasing sensitivity
	Noisy Cognition and Bayesian Inference
	Sensitivity towards Costs and Benefits

	Attitudes towards mixed gain-loss lotteries
	Loss aversion in Robson-Netzer
	Decision-by-Sampling and loss attitudes
	Noisy Cognition and Attitudes towards Losses

	On the origin of probability distortions
	Probability weighting as a second-best
	Likelihood frequency and likelihood distortions
	Probability Distortions as Optimal Bayesian Inference
	Explaining the Ellsberg paradox

	Choice stochasticity
	The state of the empirical evidence
	General tests of cognitive frictions
	Tests of Decision-by-Sampling
	Context-dependence of choices under risk
	Cognitive and neural correlates of decision noise

	Current limitations and future opportunities
	Models of encoding and models of decoding
	Models of adaptation
	Cognitive frictions and the status of preferences
	Conclusion: Unified foundations of decision-making


