
Incentive effects on decisions under risk
and over time: A Meta-Analysis∗

Yuchi Li1 and Ferdinand M. Vieider1

1RISLαβ, Department of Economics, Ghent University

20 November 2025

Abstract

Real monetary incentives are a core principle of experimental economics,
yet evidence on whether they materially affect individual decisions under
risk and over time remains mixed. We provide a quantitative reassess-
ment by analyzing 584 standardized effect sizes from 70 papers that ran-
domly vary whether choices are hypothetical or incentivized. We estimate
the underlying incentive effect using an outlier-robust Bayesian hierarchical
measurement-error model, and supplement it with multiple publication-bias
diagnostics embedded within a Bayesian model-averaging framework based
on leave-one-out cross-validation. Across all approaches, the estimated in-
centive effect is extremely small. The posterior mean lies well within the
region of negligible effects (Cohen’s d ≈ 0.05). Although true effect sizes
are heterogeneous, this variation is only weakly related to study character-
istics. Significant moderators include design features such as within- versus
between-subjects implementation and decisions involving mixed gain-loss
outcomes. Overall, real incentives do not materially alter behaviour in stan-
dard individual decision tasks.

1 Motivation

The use of real monetary incentives has long been a defining principle of experi-

mental economics. Classic contributions argued that financially salient and domi-

nant incentives are essential for eliciting true preferences in the laboratory, ensur-
∗This research was supported by the Research Foundation—Flanders under the project

“Causal Determinants of Preferences” (G008021N). We are indebted to Michael Birnbaum and
Peter Wakker for helpful comments and discussions. We did not register a pre-analysis plan,
since the current manuscript contains a meta-analysis of existing papers. All errors remain our
own.
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ing that participants’ decisions reflect the economic tradeoffs under study (Smith,

1982; Plott, 1986). Although this position has shaped decades of experimental

practice, the debate over the practical importance—and even the necessity—of

real incentives has never been fully resolved. There is widespread agreement that

real payments are indispensable in some domains, such as eliciting willingness to

pay for socially desirable outcomes (Carson and Groves, 2007). Yet for individ-

ual decision-making tasks involving risk or intertemporal tradeoffs, the evidence

is more mixed. Early influential studies reported sizable differences between hy-

pothetical and incentivized choices (e.g. Holt and Laury, 2002), whereas more

recent high-stakes and large-sample experiments often find negligible or no effects

(e.g. Brañas-Garza, Estepa-Mohedano, Jorrat, Orozco and Rascón-Ramírez, 2021;

Brañas-Garza, Jorrat, Espín and Sánchez, 2023). As a consequence, the decision

of whether to incentivize subjects frequently remains guided more by intuition and

convention than by a systematic assessment of empirical evidence.

In this paper, we provide a comprehensive quantitative assessment of the effect

of incentive provision on individual decision-making in tasks involving risk and

delays. We assemble the universe of experimental studies that vary incentives be-

tween real and hypothetical conditions and extract 584 effect-size estimates from

70 papers. By encoding all contrasts in a common metric (Cohen’s d), we sys-

tematically characterize both the magnitude and the direction of incentive effects

across diverse designs and decision contexts. We then analyze these effect sizes

using state-of-the-art Bayesian hierarchical meta-analytic methods, which allow

us to separate true effects from sampling noise, assess the presence of publication

bias, and quantify heterogeneity across studies and experimental features.

Why meta-analysis. Although real monetary incentives are traditionally viewed

as essential for eliciting economically meaningful choices, the theoretical rationale

for strong incentive effects in individual decision tasks is far from unequivocal. In-

centives may suppress experimenter-demand effects or reduce careless responding,

but they need not eliminate systematic violations of expected utility or time-

consistent discounting. Classic work on preference reversals, for instance, showed
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that behavioural regularities persisted or even intensified when salient incentives

were introduced (Grether and Plott, 1979), and more recent work documents that

many well-known biases remain stable across hypothetical and incentivized set-

tings, even with high stakes (Enke, Gneezy, Hall, Martin, Nelidov, Offerman and

Van De Ven, 2023; Gneezy et al., 2024). Thus, theory offers no clear prediction

about when or whether incentives should matter in individual decision-making

tasks.

Empirically, the existing evidence is similarly inconsistent. Influential early studies

such as Holt and Laury (2002) reported substantial differences between hypotheti-

cal and incentivized choices, but these findings derive from relatively small samples

and highly specific elicitation methods. More recent high-stakes or large-sample

studies frequently find much smaller or null effects. Because individual studies

differ widely in design, stakes, implementation, and measurement, it is difficult to

infer whether such discrepancies reflect true heterogeneity, sampling variation, or

selective reporting. A cumulative and principled assessment of the experimental

evidence is therefore required.

Previous meta-analyses have examined related questions—such as incentive ef-

fects on time discounting (Matousek, Havranek and Irsova, 2022), present bias

(Imai, Rutter and Camerer, 2021; Cheung, Tymula and Wang, 2023), or loss aver-

sion (Brown, Imai, Vieider and Camerer, 2024)—but these studies rely entirely

on between-study variation in incentive provision. Such comparisons lack causal

identification: incentivized and hypothetical studies often differ systematically

in stakes, design, task domain, or population, and residual heterogeneity is large

(Brown et al., 2024). As a result, between-study contrasts cannot isolate the effect

of incentives from confounding design features. For example, hypothetical studies

typically use higher nominal stakes than incentivized ones; even with statistical

controls, identification requires strong assumptions about accurate measurement

of stakes and linearity of stake effects, conditions unlikely to hold when the two

distributions exhibit little overlap.
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Our approach overcomes these limitations by focusing exclusively on studies that

experimentally vary incentive provision within the same design. We extract 584

standardized effect sizes from 70 papers directly comparing hypothetical and real

incentives, enabling a causal interpretation of incentive effects. We analyze these

effect sizes using a robust Bayesian hierarchical meta-analytic framework that sep-

arates true effects from sampling noise, accommodates heavy-tailed heterogeneity,

explicitly models publication bias, and incorporates study characteristics through

meta-regression.

Key findings. We begin with a nonparametric examination of the 584 exper-

imentally identified effect sizes. The raw distribution of encoded effects already

points to the central result of this paper: the mode, median, and mean effect

sizes all lie arbitrarily close to zero. More than half of all effects fall below 0.2 in

absolute value, and the signed distribution is almost perfectly symmetric around

zero. These patterns strongly suggest that, if incentives influence choices at all,

the effect must be very small.

We next turn to our Bayesian hierarchical measurement-error model (BHMEM),

which formally separates true heterogeneity from sampling noise and aggregates

the experimentally identified causal effects from each study into a coherent population-

level estimate. Unlike classical meta-analytic tools, the BHMEM allows us not

only to reject the null, but—crucially—to accept it when the entire posterior for

the mean lies within the region of negligible effects as classified by Cohen (1988).

Under this fully Bayesian specification, the posterior for the population mean is

narrowly concentrated near zero, and the 95% credible interval is contained en-

tirely in the negligible range. This provides a rigorous demonstration that the

true incentive effect on individual decisions under risk or over time is, on average,

too small to be of practical relevance.

Small-study effects and publication bias. Because the largest reported in-

centive effects almost exclusively come from small, noisy studies, a natural concern

is that these findings may be inflated by selective reporting rather than reflect-
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ing genuine behavioural responses to incentives. In particular, the most extreme

effect sizes in either direction almost always come from relatively small studies

with large standard errors, raising the possibility that exaggerated findings reflect

sampling variability rather than genuine incentive effects. This makes publica-

tion bias a natural concern and motivates a systematic evaluation using multiple

complementary diagnostic tools.

We therefore examine small-study patterns using a broad set of methods. Along-

side classic visual diagnostics—such as funnel plots and Egger-type precision re-

gressions (Egger, Smith, Schneider and Minder, 1997)—we deploy publication-

bias models that explicitly adjust the estimated mean effect. These include the

precision–effect test and precision–effect estimate (PET–PEESE; Stanley, 2008;

Stanley and Doucouliagos, 2014), the stepwise selection framework of Vevea and

Hedges (1995), and the continuous-selection model of Andrews and Kasy (2019).

Each approach embodies distinct assumptions about how selective reporting operates—

whether through linear small-study patterns, discrete p-value thresholds, or smooth

changes in publication probabilities across test statistics. Examining them side

by side thus provides a robust assessment. In addition to their standard fixed-

effects formulations, we embed all of these models within our Bayesian hierarchical

measurement-error framework (BHMEM), allowing them to account for between-

paper heterogeneity and measurement error in a unified way.

The results diverge in predictable ways. PET–PEESE finds no evidence of system-

atic publication bias. Classical stepwise selection models à la Vevea and Hedges

(1995) imply strong selection based on statistical significance, whereas regression-

based and spline-based approaches detect little or no such bias. Crucially, however,

even under models that suggest substantial selective reporting, like Vevea–Hedges,

the bias-corrected mean effect remains extremely small and lies well within the

negligible region. Thus, while the methods differ in their implied degree of pub-

lication bias, they agree that correcting for it does not reveal any substantively

meaningful effect of real versus hypothetical incentives.
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Bayesian model averaging within a hierarchical framework. To synthe-

sise the competing assumptions embodied by the various publication-bias models,

we implement a prediction-optimized Bayesian model-averaging procedure that

operates within the hierarchical structure of the BHMEM. Rather than averag-

ing fixed-effect models using Bayes factors—as is common in existing software

implementations—we derive model weights using stacking based on leave-one-out

cross-validation (Vehtari, Gelman and Gabry, 2017; Yao, Vehtari, Simpson and

Gelman, 2018). This approach allocates weight according to each model’s predic-

tive contribution and is well suited to hierarchical, heavy-tailed specifications, for

which Bayes-factor weighting is often unstable.1

Under this criterion, the hierarchical measurement-error model receives the highest

weight, while publication-bias corrections—such as PET–PEESE, Vevea–Hedges

selection models, and Andrews–Kasy selection functions—receive modest but non-

negligible weight when they provide complementary predictive structure. The

resulting model-averaged estimate,

µPoBMA = 0.051 (95% CrI [0.024, 0.079]),

remains small and entirely within the negligible region. The prediction-optimized

averaging framework thus reinforces, rather than overturns, the conclusion ob-

tained from the hierarchical analysis alone.

True heterogeneity. Although the mean effect is negligible, the estimated heavy-

tailed distribution of true effect sizes indicates that incentive effects vary mean-

ingfully across studies, with a nontrivial proportion of studies exhibiting small

but real deviations in either direction. We find no differences in incentive effects

between decisions in the risk and time domain. By contrast, incentive effects

are more pronounced in the loss domain and especially in mixed gain-loss tasks

than for gains. Meta-regression reveals that real incentives make subjects mod-
1For comparison, Maier, Matzke, Rouder, Wagenmakers and Ly (2022) propose a Bayes-

factor-based averaging scheme for fixed-effect meta-analytic models. Our approach differs in that
all publication-bias models are embedded within a hierarchical measurement-error framework
and combined using LOO-based stacking.
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estly more risk averse for pure losses but considerably more risk seeking for mixed

lotteries. Both patterns are fully consistent with house-money or endowment-

integration mechanisms inherent in standard implementations of monetary losses.

Other study characteristics—such as whether all subjects are paid, whether all de-

cisions are incentivized, whether the study was conducted online or in the field, or

whether it was published in economics—explain little additional variation.

Taken together, these results lead to a strikingly robust conclusion: real monetary

incentives have, on average, no meaningful impact on individual decision-making

under risk or over time. The small pockets of heterogeneity that do emerge are

readily explained by implementation artefacts rather than by genuine motivational

effects of incentives. In particular, the deviations we observe in mixed gain-loss

choices arise in domains where incentives are almost always implemented through

loss-from-endowment procedures, which are known to induce house-money effects.

These patterns therefore reflect the psychology of loss implementation, not height-

ened sensitivity to monetary incentives.

Paper organization. This paper proceeds as follows. Section 2 describes our

literature search, inclusion criteria, and coding. Section 3 examines raw effect

sizes, introduces our preferred Bayesian Hierarchical Measurement Error Model,

and examines aggregate model-based estimates. Section 4 examines small study

effects, and conducts the Bayesian Model Averaging. Section 5 uses nonparamet-

ric analysis and meta-regression to examine true heterogeneity in study effects.

Section 6 concludes the paper.

2 Methods

2.1 Literature Search and Study Selection

We conducted a comprehensive search for empirical studies comparing decisions

made under real monetary incentives with decisions made under hypothetical in-
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centives in tasks involving risk, uncertainty, or intertemporal choice. We carried

out the primary search in April 2024 using Web of Science (All Databases), with-

out restrictions on publication year or document type.

Our search terms captured contrasts between hypothetical and real rewards as

well as decision contexts involving risk or delay. We screened reference lists of all

identified studies, and we supplemented the search using Peter Wakker’s annotated

bibliography, which contains a dedicated category for variation in incentives. We

furthermore circulated our list of studies on the ESA and JDM-society mailing

lists to elicit any studies we might have missed. This process yielded 526 initial

records and 238 additional records from backward citation searches, bibliographic

sources and society feedback.

We included studies if they (i) compared hypothetical and real incentives using

behavioral measures, and (ii) held constant the ranges of reward magnitudes, prob-

abilities, or delays across conditions. These criteria ensure that incentive effects

are not confounded with known context effects such as the magnitude effect in tem-

poral discounting or stake effects across outcome ranges. We excluded seventy-five

studies because they violated this design requirement. The final dataset contains

70 papers, including 24 temporal discounting studies and 53 risk-taking studies

(some papers include both risk and delay tasks, and are thus counted in both

categories).

Online Appendix A provides full search terms, details on inclusion and exclu-

sion criteria, and a list of excluded papers. Online Appendix H lists all included

papers.

2.2 Coding of Effects and Study Characteristics

For each study, we coded a measure of the effect of incentives on choice behaviour.

A first challenge arose from the wide variation in reporting standards: many papers

did not focus explicitly on incentive effects or reported them only indirectly.

When papers reported multiple effect sizes—for example, because they included
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several experimental tests, reported both nonparametric and structural estimates,

or estimated multiple behavioural parameters from the same structural model—we

included all eligible effects (we will explicitly account for their statistical depen-

dence in the hierarchical structure of our model). After excluding five effects for

which the direction of the effect could not be established, we were left with 66

papers containing 83 distinct experiments, which between them contribute a total

of 584 effect sizes. These constitute the primary unit of analysis.

To compare effects across heterogeneous reporting formats, we converted all incen-

tive contrasts to Cohen’s d (Cohen, 1988). When papers reported group means and

standard deviations, we computed d using the pooled standard deviation. When

papers reported inferential statistics (e.g., t, F , or z statistics, or regression coeffi-

cients), we converted these to d using standard transformations. Separate formulas

were used for between-subject and within-subject designs to account for the corre-

sponding correlation structures in choice behaviour. Online Appendices C and D

provide the full formulas for computing effect size d and its standard error.

A second challenge arose from the diversity of choice architectures. A substantial

majority of effect sizes were derived from nonparametric behavioural measures.

These include proportions of patient versus impatient choices in intertemporal

tasks, proportions of risky versus safe choices under risk, indifference points, and

Area Under the Curve (AUC) measures. In total, 440 of the 584 effect sizes

fall into this category. For intertemporal choice, we coded these measures so

that larger values of Cohen’s d indicate greater impatience under real incentives.

Analogously, for risky decisions we coded nonparametric contrasts so that larger

values correspond to increased risk aversion.

The remaining effect sizes were derived from parametric estimations. These in-

clude parameters capturing constructs such as utility curvature or loss aversion,

as well as discounting parameters in intertemporal choice. We only included para-

metric measures when their directional interpretation in terms of risk aversion

or impatience was unambiguous. For example, utility curvature parameters con-
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sistently map onto risk aversion; proportional discounting parameters such as k

in 1/(1 + kt), where t is the time delay, likewise provide a monotonic proxy for

impatience. Our dataset contains quasi-hyperbolic (β–δ) discounting estimates.

Quasi-hyperbolic estimates were included because both β and δ−1 can be inter-

preted as proxies for impatience in a behaviourally consistent manner. We did

not include fully hyperbolic (or time sensitivity) parameters, nor probability sen-

sitivity parameters, since they do not map monotonically onto impatience or risk

aversion and would therefore not allow for consistent coding.

In addition to the key effect sizes, we coded major design features of each study,

including the experimental setting (laboratory, field, online), the subject popula-

tion (students vs. general population), reward type (monetary vs. non-monetary),

decision domain (gains, losses, mixed), and the incentive scheme (e.g., paying a

subset of subjects, paying one randomly selected choice, paying all choices). Online

Appendix E provides the full list of variables and operational definitions.

Finally, because parametric and nonparametric effect sizes may differ systemati-

cally in scale, noise properties, and behavioural interpretation, we conduct exten-

sive robustness checks and include parameter type as a moderator in our meta-

regression analyses. These analyses confirm that our main results are not driven

by differences between nonparametric and parametric measures.

3 Aggregate results

We present our findings in several stages, starting from an aggregate analysis.

We first describe nonparametric patterns in the data. We then estimate the meta-

analytic mean using a hierarchical Bayesian measurement error model and examine

the posterior inferences based on that model.

10



3.1 Incentivized vs hypothetical studies: raw effects

Descriptive results. We begin by presenting descriptive evidence on the dis-

tribution of effect sizes across all decision types and outcome domains. Panel A

of Figure 1 plots the density of the absolute values of all 584 encoded effect sizes

di. It also plots the distribution of the 440 effect sizes based on non-parametric

measures for comparison. The distribution is heavily concentrated near zero: fully

51% of all effect sizes are smaller than 0.2. Thus, more than half of the reported

effects do not even reach Cohen’s threshold for a “small” effect. Both the mode and

median effect sizes are therefore best characterized as negligible. An additional

36% of effect sizes fall into Cohen’s “small” category, while medium-sized and large

effects are rare, at 10% and 3% respectively. The distribution of nonparametric

effects closely resembles the overall distribution.

Because Panel A represents absolute effect sizes, it does not capture the direction

of the incentive effect. Beyond whether incentives have any effect on behaviour, an

important question is whether the reported effects exhibit a consistent directional

pattern. To address this, we coded all effect sizes so that positive values indicate

greater risk aversion (or impatience) under real incentives, whereas negative values

indicate greater risk seeking (or patience).

Panel B of Figure 1 plots the distribution of signed effect sizes on the negative–

positive continuum (separately using the full data and the nonparametric measures

only). The distribution is strikingly symmetric around zero: the mode (= 0), me-

dian (= 0.022), and mean (= 0.021) all lie extremely close to zero. Moreover,

larger positive effects (greater risk aversion or impatience under real incentives)

are almost perfectly counterbalanced by larger negative effects (greater risk seek-

ing or patience under real incentives). In short, the descriptive evidence reveals

no coherent directional pattern in the literature. Incentive effects pointing to-

ward increased caution are nearly exactly offset by effects pointing in the opposite

direction.
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Figure 1: Probability density of Cohen’s d

Distribution of 584 Cohen’s d effect sizes across studies. Panel A shows the distribution of absolute effect
sizes. Panel B shows the distribution preserving the sign of the effect, with positive values corresponding to
increased risk aversion or impatience under real incentives, and negative values corresponding to increased
risk seeking or patience.

3.2 Hierarchical Bayesian Model

To analyze the incentive effects statistically, we develop a Bayesian Hierarchical

Measurement-Error Model (BHMEM). A hierarchical (random-effects) specifica-

tion allows us to model genuine cross-study variation in true effect sizes, which

we expect to be present based on the large number of studies and the diversity of

behavioral tasks included in this meta-analysis. The Bayesian framework provides
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additional flexibility to extend the model in response to substantive questions that

arise from the data.

Hierarchical Bayesian Model with Experiment Cross-Classification. Our

basic unit of analysis is Cohen’s d, representing the observational estimate of the

incentive effect in study i. Each observed effect size di is measured with sam-

pling uncertainty, for which we use the reported sampling variance se2i . Following

standard meta-analytic practice, we assume the measurement-error model

di ∼ N
(
d̂i, se

2
i

)
, (1)

where d̂i denotes the true (latent) effect size underlying study i. The hierarchical

model then specifies how these latent true effects vary across studies. To accom-

modate potential outliers and true heterogeneity across studies, we model the

distribution of the true effects using a Student–t specification:

d̂i ∼ Student-t(ν, µ+ γx, σ) , (2)

where µ is the population-level mean effect, σ is the between-study scale parameter

(with σ2 representing the variance in true effect sizes across studies), and where

ν ≥ 2 denotes the degrees of freedom. Estimating ν lets the data determine the

appropriate tail behaviour: small values of ν yield heavy tails that downweight

outlying effect sizes, while for large values of ν the distribution is approximately

normal. This makes the model robust to outliers without imposing strong assump-

tions about their presence.

In addition, we cross-classify effects to account for statistical dependency:

γx ∼ N (0, τ 2x). (3)

The term γx introduces an experiment-level random effect, ensuring that all effect

sizes originating from the same experiment share a common shift relative to the
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overall mean. This induces the appropriate correlation among within-experiment

estimates and prevents single experiments for which many outcomes are reported

from disproportionately influencing the meta-analysis.

Under this specification, each observed effect size di combines two sources of vari-

ability: (i) sampling variance se2i , arising from measurement error in the individual

study, and (ii) hierarchical variance components governed by σ and τ 2x , capturing

genuine heterogeneity in the underlying true effects across studies and experi-

ments. The hierarchical model thus separates study-level noise from substantive

cross-study variation and shrinks noisy estimates toward the overall mean µ.

Bayesian posterior inferences. We now deploy our BHMEM to study the dis-

tribution of true effect sizes. We estimate the model in Stan (Carpenter, Gelman,

Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li and Riddell, 2017) us-

ing mildly regularizing hyperpriors Gelman, Carlin, Stern, Dunson, Vehtari and

Rubin (2014), chosen to be at least one order of magnitude wider than the plau-

sible ranges suggested by the data. The results reported here are not sensitive to

reasonable variations in these hyperpriors. We assessed convergence by verifying

the absence of divergent transitions and ensuring that all R̂ statistics are very

close to 1, with R̂ ≤ 1.01 accepted as an indication of satisfactory mixing. On-

line Appendix G reports full details, including the Stan code used; Vieider (2024)

provides a tutorial introduction to Bayesian hierarchical modeling in Stan.

The estimated degrees of freedom of the Student–t distribution is ν = 2.154 (95%

CrI [2.004, 2.532]), confirming substantial tail heaviness and thus validating the

Student–t specification as an outlier-robust choice. The estimated meta-analytic

mean is µ = 0.043. With a 95% credible interval (CrI ) [-0.004, 0.092]), this mean

is not statistically distinguishable from zero and falls entirely within the range

of negligible effect sizes. Panel A of Figure 2 compares the raw effect sizes di

to the posterior distribution of true effect sizes d̂i. The posterior distribution is

substantially narrower, with 65% of all d̂i falling in the negligible-effect interval

[−0.2, 0.2]. This illustrates meta-analytic shrinkage: each di is pulled toward the
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meta-analytic mean in proportion to its standard error. The extent of shrinkage

suggests that studies reporting larger effects tend to be relatively noisy—a point

to which we will return below.
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Figure 2: Posterior inferences on effect sizes
Posterior inferences from the BHMEM. Panel A compares the distribution of raw effect sizes di with the
posterior distribution of true effect sizes d̂i. Panel B plots the posterior means d̂i (x-axis) against their
posterior standard deviations (y-axis), which correspond to standard errors in frequentist terminology.

Meta-analytic shrinkage affects not only the estimated effect sizes but also the pre-
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cision with which they are estimated. Because the posterior standard deviations

sdi of the true effects (equivalent to a standard error in frequentist statistics) in-

corporate both sampling variability and shrinkage toward the meta-analytic mean,

they are typically smaller than the raw standard errors sei. The implications for

statistical significance are therefore ambiguous ex ante: shrinkage pulls effects

toward zero, but it also reduces the uncertainty surrounding the estimate.

To assess statistical significance in our Bayesian framework, we define a region of

practical equivalence (RPE) around the null hypothesis of no effect . Following

Cohen’s conventions, it is natural to take the interval [−0.2, 0.2] to represent

negligible effects. We classify a study as “positive” if at least 95% of its posterior

mass lies above 0.2, and as “negative” if at least 95% lies below −0.2. Studies with

at least 95% of their posterior mass within the RPE are classified as unambiguously

negligible.2 All remaining studies are classified as “uncertain”, inasmuch as they

do not provide sufficient information for unambiguous classification.

Panel B of Figure 2 plots the true posterior effect size d̂i against its standard de-

viation sdi, and colour-codes the points depending on their classification. Overall,

3.8% of studies show a positive effect and 3.8% a negative effect. Combined, these

7.6% exceed the 5% one would expect by chance alone, suggesting the presence of

(moderate) genuine heterogeneity in true effects—a topic we will examine at some

length below. By contrast, 14.0% of studies are unambiguously negligible. These

provide positive evidence of absence, not merely absence of evidence: for these

studies, a practically null effect is genuinely likely. Such cases are almost twice

as common as positive and negative effects combined. Finally, 78.4% of studies

are too imprecise or too small to yield a clear conclusion, reflecting low power or

unfavorable signal-to-noise ratios.

The pattern of results raises the question of whether publication bias may con-

tribute to the prevalence of small and statistically significant effects. We turn to

this issue next.
2The choice of a 95% posterior probability threshold follows statistical convention; other

thresholds would lead to qualitatively similar conclusions.
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4 Is there publication bias?

The meta-analytic results above indicate that larger effects—whether positive or

negative—tend to be associated with greater sampling noise. This may simply

reflect sampling variation in small studies, but it may also be symptomatic of

publication bias. We therefore begin with a set of nonparametric diagnostics.

4.1 Nonparametric examination of small study effects

Panel A of Figure 3 presents a funnel plot of the raw effect sizes di against − ln(sei),

a measure of the precision of the effect. More precise studies thus appear at the

top of the graph. The figure shows a clear pattern: the most extreme effect

sizes (which are both positive and negative) occur almost exclusively in imprecise

studies, whereas the most precise studies tend to cluster around zero, with only a

few small positive exceptions. In the absence of small-study effects, the estimated

effect sizes should not systematically vary with their standard errors; precise and

imprecise studies would be centered on the same underlying value.
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Figure 3: Funnel plot of Cohen’s d against its log-standard error
The figure plots the raw effect sizes di against −ln(sei) (panel A) and against

√
N (panel B). The gray area

in panel A indicates a zone containing non-significant results. The gray area in panel B provides a similar
measure, given by 1.5√

N
. The scaling factor of 1.5 is used because it approximates the average standard

deviation in the sample.

Panel B of Figure 3 plots effect sizes against
√
N to display the same relationship

in terms of sample size. The conclusions remain unchanged: small studies generate

nearly all large positive and large negative effects, whereas larger studies (with a
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few exceptions) converge toward negligible effects. The correlations between effect

size and precision are sizable: |di| is negatively correlated with
√
N (ρ = −0.365,

p < 0.001), with similar patterns for positive effects (ρ = −0.399, p < 0.001)

and negative effects (ρ = −0.348, p < 0.001). Signed effects also show a negative

relationship with precision (ρ = −0.206, p < 0.001). These findings indicate

pronounced small-study effects. Although such effects do not necessarily imply

publication bias, publication bias is a common mechanism capable of producing

these patterns.

A standard diagnostic for funnel-plot asymmetry is Egger’s regression, which re-

gresses the standardized effect size di/sei on study precision 1/sei. Under the

null of no small-study effects, the intercept should be zero. Applied to absolute

effect sizes, Egger’s test yields a strongly positive intercept (β0 = 1.314, 95% CrI

[1.018, 1.607]; slope β1 = 0.060, 95% CrI [0.028, 0.090]), indicating that small,

imprecise studies tend to report disproportionately large deviations from zero.

In Egger’s framework, this is the classical pattern consistent with publication

bias.

When applied to signed effect sizes, however, the pattern disappears: the intercept

is small and uncertain (β0 = 0.268, 95% CrI [−0.159, 0.695]), and the slope is near

zero (β1 = −0.019, 95% CrI [−0.064, 0.026]). This divergence is informative: it

implies that small studies tend to report extreme effects, but not systematically

in the positive or negative direction. In other words, the small-study pattern we

observe is about magnitude, not sign. Such symmetric exaggeration is compatible

with publication bias (journals preferentially publishing “large” effects in either

direction), but it is also compatible with genuine heterogeneity combined with

sampling noise.

Because Egger’s test relies on assumptions that are violated in our setting—

normality of true effects, homogeneity across studies, and statistical independence

of effect sizes—the contradictory signals between absolute and signed versions can-

not be taken as definitive evidence of bias. Instead, they point toward the need
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for explicit parametric models of selection, which we turn to next.

4.2 Formal tests and adjustments for publication bias

The effects documented above are indicative of small-study effects, in the sense

that smaller and less precise studies are more likely to show significant effects in

either direction. We next examine whether the distribution of effects is indicative

of publication bias—the tendency of null results to be less likely to be written up

by authors or published by journals. We start from a review of some of the most

common tests for publication bias.

PET–PEESE. The Precision-Effect Test (PET) and the Precision-Effect Esti-

mate with Standard Error (PEESE) are regression-based tools designed to detect

and correct for publication bias by exploiting the empirical relationship between

reported effect sizes and their standard errors (Stanley, 2008; Stanley and Doucou-

liagos, 2014). In their classical form, both methods are implemented as fixed-effect

meta-regressions: if publication bias is present, smaller and less precise studies

tend to report larger effects, generating a systematic association between esti-

mated effects and their standard errors.

For completeness and comparability with the existing literature, we estimate the

standard fixed-effect PET and PEESE regressions. In addition, we implement

Bayesian hierarchical versions of both models by embedding the PET–PEESE

structure inside our baseline random-effects BHMEM. These hierarchical exten-

sions provide several advantages: they allow publication bias to be assessed while

simultaneously accounting for (i) genuine between-study heterogeneity in true ef-

fects, (ii) statistical dependence among effect sizes reported in the same paper,

and (iii) non-normality of the distribution of true effects, since the underlying

BHMEM uses a Student-t specification. Together, these features make the hier-

archical PET–PEESE models considerably more flexible and better suited to our

data than their classical fixed-effect counterparts.

In the hierarchical formulation, the mean effect is allowed to depend on study
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precision as follows:

d̂i ∼ Student-t(ν, µ+ γx + λ sei, σ) ,

where µ is the bias-adjusted mean effect, γx is an experiment-level random effect,

and λ captures the dependence of effect sizes on study precision (PET). Under

publication bias, λ is expected to differ from zero.3

The corresponding PEESE specification replaces the standard error with its square:

d̂i ∼ Student-t
(
ν, µ+ γx + λ se 2

i , σ
)
.

PEESE typically provides a less biased estimate of µ when a genuine nonzero effect

exists, whereas PET is more reliable when the true effect is close to zero.

Across both PET and PEESE, the intercept µ corresponds to the predicted effect

size for an infinitely precise study (sei → 0) and thus serves as the publication

bias-adjusted estimate of the underlying population effect.

Vevea & Hedges selection model Other than PET–PEESE, the Vevea and

Hedges (1995) model explicitly models the probability of a study being selected

for publication. The approach combines two components: (i) an effect-size model,

analogous to our Bayesian Hierarchical Measurement Error Model (BHMEM),

that characterizes the distribution of study outcomes in the absence of selective

publication, and (ii) a selection model that assigns relative probabilities to studies

based on the p-value associated with their effect estimate. This formulation yields

effect-size estimates that adjust for selective reporting and allows formal inference
3In the classical PET–PEESE formulation (Stanley, 2008; Stanley and Doucouliagos, 2014),

the PET regression is applied to the standardized effect size di/sei and regresses it on 1/sei.
This standardization is required under the original fixed-effect assumptions, which treat sampling
error as the sole source of variation across studies. In our Bayesian hierarchical specification,
sampling variance is already modeled explicitly through the likelihood di ∼ N (d̂i, se

2
i ), and

between-study heterogeneity is captured by the random-effects distribution. Consequently, the
PET–PEESE regression is formulated directly at the level of the latent true effect sizes d̂i. This
avoids double-counting sampling variance and allows PET–PEESE to operate consistently within
a random-effects framework.
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on the presence of publication bias.4

Let pi denote the one-tailed p-value of study i, and let w(pi) denote the probability

that a study with p-value pi is observed. The weight function is typically specified

as piecewise constant across K ordered intervals of p-values. Let the endpoints of

the jth interval be aj−1 and aj, with a0 = 0 and aK = 1. If pi falls in the jth

interval, the associated selection weight is

w(pi) = ωj, if pi ∈ (aj−1, aj].

Because only the relative publication probabilities are identified, the model re-

quires a normalization. Following standard practice, the interval containing the

most statistically significant results (i.e., (0, a1]) is normalized to

ω1 = 1.

All other weights ωj are therefore interpreted relative to this baseline. For example,

ω3 = 0.4 implies that studies with p-values in interval 3 are published with 40% of

the probability of studies in the most significant interval, whereas values ωj > 1

indicate intervals with a higher publication probability than the baseline.

The selection model can alternatively be expressed in terms of the corresponding

test statistic zi = di/sei. Defining bj = −Φ−1(aj), selection weights can be written

as

w(zi) =


ω1, if b1 < zi ≤ ∞,

ωj, if bj < zi ≤ bj−1,

ωK , if −∞ < zi ≤ bK−1,

where Φ−1(·) denotes the inverse standard normal cumulative distribution func-
4The original Vevea & Hedges model is formulated under a fixed-effect meta-analytic frame-

work. Our implementation includes both the classical fixed-effect version and a Bayesian hi-
erarchical extension embedded within the BHMEM, allowing the model to accommodate the
substantial between-study heterogeneity present in our dataset.
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tion. Given these weights, the likelihood contribution of an effect size di is

f(di | ·) =
w(zi)ϕ(di | d̂i, se2i )∑K

j=1 ωjBij(ẑi)
,

where ϕ(·) is the normal density, d̂i is the latent true effect under the effect-size

model, ẑi = d̂i/sei, and Bij(ẑi) is the probability that a normal random variable

with mean ẑi and unit variance falls in the jth selection interval:

Bij =


1− Φ(b1 − ẑi), j = 1,

Φ(bj−1 − ẑi)− Φ(bj − ẑi), 1 < j < K,

Φ(bK−1 − ẑi), j = K.

We estimate both unidirectional (V&H-UD) and bidirectional (V&H-BD) versions

of the model. In the unidirectional specification, p-values are based on |zi|, impos-

ing symmetric selection weights for positive and negative effects. The bidirectional

specification computes p-values from the signed statistic, allowing asymmetric se-

lection depending on the effect’s direction.

Following common practice, we partition the p-value distribution using thresholds

at 0.025, 0.05, and 0.10, corresponding to conventional significance levels in empir-

ical research. These intervals determine the selection weights ωj, which quantify

how much more (or less) likely studies in each significance band are to appear in

the published sample.

Andrews & Kasy selection model. The Andrews and Kasy (2019) approach

provides a general framework for identifying and correcting publication bias by

explicitly modelling both the distribution of true effects and the selection mech-

anism governing which results are observed in the published sample.5 Unlike the
5The original Andrews & Kasy framework is derived under assumptions that parallel a fixed-

effect meta-analysis, with heterogeneity incorporated through a nonparametric distribution of
true effects rather than an explicit random-effects structure. In our implementation, we estimate
both the classical version and a Bayesian hierarchical extension embedded in the BHMEM to
account for between-study heterogeneity.
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Vevea & Hedges model, which specifies relative selection weights across discrete

p-value intervals, the A&K model directly parameterizes the absolute probability

that a study with a given test statistic is published.

Let zi = di/sei denote the test statistic for study i. The central object in the

Andrews–Kasy framework is a selection function p(zi) describing the probability

that a study with test statistic zi is published (or written up). The observed distri-

bution of effect sizes is therefore a reweighted version of the latent (unpublished)

distribution:

f(di | ·) ∝ p(zi)ϕ
(
di | d̂i, se2i

)
,

where ϕ(·) denotes the normal density and d̂i is the latent true effect implied by

the effect-size model. Because p(zi) is modelled on the logit scale, the estimated

publication probabilities are constrained to lie in the unit interval (0, 1). Unlike

the Vevea–Hedges framework, which identifies only relative odds of publication

across p-value intervals, the Andrews–Kasy model targets absolute publication

probabilities.

Identification of the selection function relies on the fact that studies in a meta-

analysis typically differ in their sampling variances se2i . This variation means that

two studies with similar underlying effects can nonetheless produce different test

statistics zi = di/sei, purely because their standard errors differ. The resulting

heteroskedasticity in zi provides the key source of identifying variation that allows

the publication probabilities p(zi) to be recovered; see Andrews and Kasy (2019)

for details.

To model the selection function flexibly, Andrews and Kasy (2019) propose para-

metric and semiparametric basis expansions. We consider two widely used speci-

fications:

• Quadratic interpolation (A&K–QI). A parsimonious specification in

which

p(zi) = logit−1
(
ω0 + ω1zi + ω2z

2
i

)
,
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allowing smooth nonlinear variation in publication probability across the

range of z-values.

• Natural spline interpolation (A&K–NS). A more flexible specification

in which

p(zi) = logit−1
(
ωTb(zi)

)
,

where b(z) is a natural spline basis with knots placed at the conventional

significance thresholds (−1.960, −1.282, 0, 1.282, 1.960). This formulation

permits highly flexible, data-driven modelling of selection patterns without

imposing strong shape restrictions.6

Taken together, these two specifications span a wide range of plausible selection

mechanisms, from smooth global patterns (QI) to flexible local nonlinearities (NS).

In our implementation, both selection models are embedded within the Bayesian

hierarchical measurement-error framework described above, allowing publication

bias to be assessed while simultaneously accounting for between-paper heterogene-

ity, statistical dependence, and measurement error in a unified structure.

Selection patterns implied by the individual publication-bias models.

Each of the approaches discussed above captures a different aspect of publica-

tion selection. PET–PEESE detects small-study effects through the association

between effect sizes and their standard errors; the Vevea & Hedges model iden-

tifies discrete jumps in publication probability across p-value intervals; and the

Andrews & Kasy model estimates a smooth selection function describing the ab-

solute probability that a study with a given test statistic enters the published

literature.

Figure 4 shows that the Vevea–Hedges and Andrews–Kasy models recover markedly

different selection mechanisms. The V&H model, which imposes stepwise changes

at conventional p-value thresholds, produces the expected pattern: a sharp in-

crease in publication probability for statistically significant results. In the case
6Using a natural cubic spline basis with five degrees of freedom produces nearly identical

conclusions; we adopt the significance-knot specification because of its interpretability.
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Figure 4: Posterior mean selection probabilities for the Vevea & Hedges and Andrews & Kasy
models under random-effects specifications.

of the bidirectional specification, the increase in selection probability is less pro-

nounced for significantly negative results—which are nonetheless much more likely

than nonsignificant effects to be published.

In contrast, the A&K model places no structural restrictions on how selection

varies with the test statistic. In our dataset, the estimated selection functions

are relatively flat and do not exhibit a strong increase around the 5% significance

threshold; in some regions the publication probability even declines for extremely

large z-values (possibly due to few effect sizes in those regions). This divergence

from the V&H pattern reflects the much greater flexibility of the A&K specifica-

tion, as well as the substantial heterogeneity of our sample: many studies with

non-significant or modest effects appear to have been published, while extreme

effects may not receive disproportionately more weight in the published literature.

Rather than contradicting V&H, the A&K model therefore captures a different,

smoother dimension of selection that need not align with stepwise threshold ef-

fects.

The PET–PEESE diagnostics paint a more nuanced picture. The fixed-effect
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PET model yields a positive and statistically significant slope (λPET,FE = 0.28,

p < 0.001), suggesting that smaller and noisier studies tend to report larger effects.

However, once between-study heterogeneity is accounted for, the slope becomes

statistically indistinguishable from zero (λPET,RE = −0.25, p = 0.138).

A similar pattern emerges for the PEESE specification: the fixed-effect model

detects a significant positive slope (λPEESE,FE = 0.78, p < 0.01), whereas the

random-effects model does not (λPEESE,RE = −0.56, p = 0.139). These differences

imply that the apparent small-study effects in the raw data are closely tied to gen-

uine heterogeneity across studies rather than to selective publication alone.

Importantly, the bias-adjusted intercepts (interpreted as the effect size for an in-

finitely precise study) remain close to zero under the random-effects specifications

(µPET,RE = 0.078, µPEESE,RE = 0.057; see table 1 for statistical information), both

lying well within the range of negligible effects. Thus, while PET–PEESE detects

small-study patterns under a fixed-effect formulation, the Bayesian hierarchical

versions of these models do not provide strong evidence of systematic publication

bias once study-level heterogeneity is incorporated.7

4.3 Results from Robust Bayesian Model Averaging

To synthesise the evidence across all publication-bias models, we implement a

Prediction–Optimised Bayesian Model Averaging (PoBMA) framework. PoBMA

evaluates a broad family of meta-analytic specifications—including the baseline

measurement-error model (BHMEM), PET–PEESE, Vevea & Hedges selection

models, and the continuous-selection models of Andrews & Kasy—and combines

them into a single posterior distribution of the underlying effect. We base the

PoBMA on stacking weights derived from leave-one-out cross-validation (LOO;
7A potential concern could be that, in the hierarchical PET–PEESE models, the heavy-

tailed random-effects distribution might absorb patterns that would otherwise be attributed to
publication bias, thereby driving the PET–PEESE slope toward zero. This is not the case: the
PET–PEESE slope is identified from the within-study relationship between d̂i and sei, whereas
the Student–t random-effects distribution captures between-study heterogeneity in latent true
effects. These components are orthogonal in the likelihood, so heterogeneity cannot generate or
eliminate a dependence of effect sizes on their standard errors.
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Vehtari et al., 2017; Yao et al., 2018). This approach prioritises predictive per-

formance, is robust to the heavy-tailed hierarchical structure of our models, and

avoids the well-known sensitivity of Bayes factors to prior specification.8

Model ∆elpd weight µ

Random MEM 0.0
(0.0)

0.400 0.043
(-0.004, 0.091)

Random PEESE -0.1
(3.8)

0.279 0.057
( 0.004, 0.113)

Random A&K-NS -1.9
(3.5)

0.087 0.043
(-0.004, 0.091)

Random PET -2.6
(3.9)

0.151 0.078
(-0.002, 0.158)

Random A&K-QI -2.9
(3.1)

0 0.042
(-0.006, 0.089)

Random V&H-BD -13.3
(5.0)

0 0.027
(-0.025, 0.079)

Random V&H-UD -66.9
(10.3)

0.084 0.031
(-0.007, 0.068)

Fixed V&H-UD -1286.1
(176.2)

0 0.000
( 0.000, 0.000)

Fixed PEESE -1291.2
(178.5)

0 -0.003
(-0.013, 0.007)

Fixed A&K-NS -1291.4
(177.2)

0 0.006
(-0.003, 0.014)

Fixed A&K-QI -1291.4
(177.2)

0 0.006
(-0.003, 0.014)

Fixed MEM -1291.6
(177.3)

0 0.006
(-0.003, 0.014)

Fixed PET -1292.0
(181.7)

0 -0.020
(-0.037,-0.003)

Fixed V&H-BD -1300.3
(179.1)

0 -0.009
(-0.019, 0.001)

Table 1: Leave-one-out cross-validation (LOO) results and stacking weights for the 14 model
specifications included in the Prediction-optimized Model Averaging (PoBMA) framework. The
‘Model’ column lists each specification, indicating fixed- or random-effects assumptions and
the type of publication bias correction applied: hierarchical Bayesin measurement error model
(MEM), Precision-Effect Test (PET), Precision-Effect Estimate with Standard Error (PEESE),
Vevea & Hedges selection models under unidirectional (V&H-UD) or bidirectional (V&H-BD)
specifications, and Andrews & Kasy selection models using natural spline (A&K-NS) or quadratic
interpolation (A&K-QI). ∆elpd denotes the difference in expected log predictive density relative
to the best-fitting model (standard error in parentheses), ‘weight’ indicates the model stacking
weight, and µ gives the posterior mean of the bias-corrected effect size (with 95% credible
intervals in parentheses).

Each model is estimated under both fixed-effect and random-effects specifications,

yielding a total of 14 candidates. This framework allows the data to determine (i)
8Maier et al. (2022) propose a Bayes-factor-based approach to model averaging, implemented

in the RoBMA software. Our methodology differs fundamentally from theirs: all publication-bias
models are embedded within a hierarchical measurement-error framework, and model weights
are obtained via LOO-based stacking rather than Bayes factors, which are typically unstable in
hierarchical settings and highly sensitive to prior specification.
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which publication-bias corrections receive empirical support, and (ii) the resulting

bias-adjusted mean effect size µ. Table 1 reports the LOO differences, stack-

ing weights, and posterior means for µ for all models. Several patterns emerge

clearly.

First, the largest stacking weight is assigned to our Bayesian hierarchical measurement-

error model (BHMEM; weight = 0.400). Subsequent models—although designed

to correct for different forms of publication bias—do not materially improve predic-

tive performance. The next most influential models are the random-effects PEESE

specification (weight = 0.279), the random-effects PET specification (weight =

0.151), and the Andrews & Kasy continuous-selection models, all of which receive

modest but non-negligible weights.9 Whereas these models neither improve upon

nor perform substantially worse than the BHMEM, the Vevea & Hedges stepwise-

selection models display markedly poorer predictive fit (with the unidirectional

specification nonetheless contributing a small positive weight). By contrast, all

fixed-effect specifications receive effectively zero weight, reflecting the substantial

between-study heterogeneity in our data and the incompatibility of fixed-effect

assumptions with the empirical structure of incentive-effect estimates.

Second, across all random-effects models, the bias-adjusted population mean re-

mains small. Posterior means range from approximately 0.027 (V&H-BD) to 0.078

(PET), and all associated 95% credible intervals lie entirely within the “negligi-

ble” range of [−0.2, 0.2]. No model yields credible evidence for a substantively

meaningful effect of real versus hypothetical incentives. We compute the overall

model-averaged estimate of the underlying effect size by combining the individual

models using their stacking weights. The resulting posterior mean is

µPoBMA = 0.051 (95% CrI [0.024, 0.079]),

which again falls squarely within the negligible region. PoBMA therefore confirms
9Stacking weights need not mirror the ordering of models by ∆elpd. Their purpose is to

maximise the predictive performance of the combined model, meaning that a specification with
weaker standalone predictive accuracy may nevertheless receive a positive weight if it contributes
complementary predictive variation.
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that, after accounting for publication bias and heterogeneity using a wide range of

correction methods, the meta-analytic effect of real incentives on choice behaviour

remains very small.

Taken together, the PoBMA results reinforce the main conclusion from the individ-

ual publication-bias models: although the raw data exhibit small-study patterns,

once we account for heterogeneity and alternative mechanisms of selective report-

ing, the underlying effect of incentive provision on decision behaviour is very small

and likely negligible.

5 Variability in true effect sizes

We next examine whether the residual variability in true effect sizes—after ac-

counting for sampling error and shrinkage—is systematically related to character-

istics of the underlying studies.

5.1 Meta-regression

To assess whether observable study characteristics predict systematic variation in

true effect sizes, we extend the Bayesian hierarchical measurement-error model by

replacing the population mean µ in Eq. (2) with a meta-regression term. Let X

denote an N ×K matrix of study-level predictors and let α be the corresponding

K-dimensional vector of regression coefficients. The model becomes:

d̂i ∼ Student-t(ν, Xiα+ γx, σ) ,

where Xi is the row of predictors for study i, γx is the experiment-level random

effect, and σ captures the between-study standard deviation of the true effects

after accounting for the covariates. The goal of this meta-regression is to explain

true heterogeneity in d̂i after adjusting for the influence of sampling error.

Before turning to the substantive moderators, it is important to clarify the choice
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of model used to analyse heterogeneity. Although the PoBMA framework provides

our preferred estimate of the overall effect size by averaging across publication-

bias corrections and model structures, it is not suited for meta-regression. The

publication-bias models included in PoBMA impose substantially different likeli-

hoods and regression structures (e.g. PET and PEESE introduce precision terms,

Vevea–Hedges applies p-value-based weighting, and—to complicate things further—

fixed-effect variants do not allow for heterogeneity at all), making moderator effects

non-comparable across models.

By contrast, the Bayesian hierarchical measurement-error model (BHMEM) pro-

vides a unified and coherent platform for studying systematic variation in the la-

tent true effect sizes d̂i. It explicitly separates sampling error from between-study

variability, accommodates experiment-level clustering, and allows covariates to be

incorporated in a consistent manner. Importantly, the BHMEM is also the best-

performing model in the LOO comparison (Table 1), receiving the highest stacking

weight. This indicates that, among all candidate models, it offers the strongest

predictive performance for the data at hand.

For these reasons, all inferences about heterogeneity across study characteristics

are based on the BHMEM rather than on the model-averaged PoBMA estimates.

All regression results reported below come from a single meta-regression that in-

cludes the following predictors: a dummy for decisions in the time domain (relative

to risk tasks); a within-subjects dummy (relative to a between-subjects design);

dummies for loss and mixed outcome domains (relative to gains); a dummy in-

dicating whether the effect is based on a parametric estimate rather than a non-

parametric measure; dummies for field and online experiments (relative to labora-

tory studies); the probability with which a participant is selected for payment in

between-subject randomization schemes (binarized to paying all subjects versus

paying only some); and a dummy indicating whether all decisions in a study are

incentivized. We also control for whether a study is published and whether it

appears in an economics journal. The full regression tables, as well as several ro-

bustness analyses including additional controls (such as geographical location and
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measurement method) and continuous version of binarized variables are reported

in Online Appendix F.

5.2 Domain differences: risk, time, mixed, and losses

We begin by examining differences across decision domains—most prominently,

between risk and time.10 Panel A of Figure 6 plots kernel density estimates of the

raw effect sizes for risk and time tasks. At a descriptive level, the two distribu-

tions are remarkably similar: both are centered close to zero and show a broadly

symmetric shape around that point. There is no visually apparent shift suggesting

that incentive effects systematically differ between the two domains.

While the nonparametric distributions provide no indication of domain-level differ-

ences, visual comparisons alone cannot account for sampling error, between-paper

heterogeneity, or correlations with other study characteristics. We therefore turn

to the meta-regression analysis, which formally tests whether the underlying, bias-

adjusted effect sizes differ between risk and time preferences once these factors

are taken into account. Panel C plots the posterior difference in true effects be-

tween time and risk domains, together with its 95% credible interval. The interval

spans zero comfortably, indicating that—after adjusting for noise and study-level

covariates—there is no meaningful difference in incentive effects between risk and

intertemporal choice tasks.

Panel B shows the distribution of raw effect sizes separately for gains, losses, and

mixed-outcome choices. Effects for gains are perfectly centered on zero, indicating

no detectable incentive effect in this domain. In contrast, losses appear slightly

shifted toward greater risk aversion, whereas mixed gain–loss choices exhibit a

much broader distribution that does not reveal an immediate directional pattern.

To clarify these patterns, Panel C reports the corresponding meta-regression es-

timates. Although the coefficient for losses is indeed in the direction of increased

risk aversion, the credible interval includes zero, indicating that the effect is not
10The dataset includes a single effect size from an ambiguity task (i.e. choices under unknown

probabilities). We classify this as part of the “risk” domain for present purposes.
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Figure 5: Cohen’s d by decision domain

statistically meaningful. For mixed gain–loss choices, however, the estimated ef-

fect is significantly negative: incentives push choices in the direction of greater

risk seeking (i.e., reduced risk aversion).

These results raise important interpretational considerations. Together with the

null effect for gains, the findings suggest that the observed domain differences

may reflect features of the incentivization mechanism itself, rather than intrin-

sic differences in preferences under real versus hypothetical payment. Nearly all

incentivized studies in our dataset implement losses by deducting them from an

initial endowment. This creates the possibility of house-money–type integration,

whereby subjects mentally combine the experimental endowment with the subse-

quent losses (Thaler and Johnson, 1990). The qualitative pattern we observe is

exactly what such integration predicts. For pure losses, integrating with a positive

endowment dilutes or eliminates loss framing, reducing risk-seeking tendencies—as

reflected in the shift toward greater risk aversion. For mixed gambles, integration

can diminish the effective loss component; for loss-averse individuals, this should

increase risk taking, precisely the direction found in our data. Direct evidence for
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such mechanisms has been documented experimentally by Jelschen and Schmidt

(2023), who show how unconditional endowments can be mentally assimilated and

thereby alter risk-taking behavior.

It is important to emphasize how these findings differ from those in prior meta-

analyses examining loss aversion. Brown et al. (2024) report no systematic dif-

ference between incentivized and hypothetical conditions. The key distinction is

methodological: these earlier studies rely on between-study comparisons, where

incentive conditions are not randomized and can be confounded with other de-

sign features (e.g., stake size, elicitation method, sample composition) that often

covary with payment schemes. In contrast, the effects estimated in our meta-

analysis are based on within-study random variation in incentives. They therefore

admit a causal interpretation: the differences we observe reflect the consequences

of incentivization itself, rather than uncontrolled differences across studies.

5.3 Design differences: treatment and incentives

Panel A of Figure 6 separates effect sizes according to whether the experiment

used a between- or within-subjects manipulation. This distinction is theoreti-

cally important: within-subjects designs are more susceptible to contrast effects

(a given change appears more pronounced when experienced side-by-side) and to

experimenter-demand effects (subjects may infer what the experimenter “wants”

from observing treatment variation). See, for example, Greenwald (1975) for an

early and influential discussion.

This matters for interpreting the broader literature. The canonical evidence often

cited as proof that incentives “matter” in individual decision tasks—notably Holt

and Laury (2002)—relies on a within-subjects manipulation of payoff salience. As

several commentators have pointed out, such designs confound incentive effects

with contrast- and demand-induced shifts in choice patterns (e.g. Read, 2005).

Our data reveal precisely this pattern: within-subject manipulations tend to yield

noticeably larger effect sizes than between-subject designs. The top bar in Panel C

confirms that this difference is statistically significant in our meta-regression.
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Figure 6: Cohen’s d by treatment design

Panel B displays density estimates conditioned on whether all subjects were paid

versus whether only a subset were paid. In most experiments employing partial

payment, the selection probability is ≤ 0.2; in such cases a dummy indicator is

more appropriate than a continuous measure. Our qualitative conclusions remain

unchanged, however, when we use the continuous probability as a covariate in

the meta-regression. Paying all subjects produces a distribution that is tightly

centered and symmetric around 0. When only a subset of subjects is paid, the dis-

tribution appears slightly shifted to the left. This pattern is not supported by the

meta-regression estimates in Panel C, which indicate no statistically meaningful

effect of the payment probability on incentive effects.

Panel C further includes a dummy for whether all decisions made by a subject were

incentivized.11 Here, too, the meta-regression detects no systematic impact on

effect sizes. In summary, although within-subject designs tend to amplify incentive

effects, the specific payment scheme—paying all subjects, paying a subset, or

paying all decisions—does not appear to meaningfully influence the magnitude of
11This design feature is not simply a subset of the “pay-all-subjects” category: some studies

pay all decisions even when only a subset of subjects is paid.
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incentive effects. Taken together, these findings indicate that, however subjects are

paid, incentive schemes have no detectable effect on individual choice behaviour—

at least for the types of tasks represented in our dataset.

5.4 Other measures of heterogeniety

The other controls, we included—parametric versus nonparametric estimates, field

or online experiments versus lab experiments, and publication status—yield no

significant effect. The full regressions—as well as robustness regressions with ad-

ditional controls, and different quantification of the incentive variables—can be

found in Online Appendix F.

Taken together, these results show that although some study characteristics—most

notably within–subjects designs and mixed gain–loss tasks—exhibit statistically

detectable shifts in estimated incentive effects, these differences are substantively

small. More importantly, meta-regression explains essentially none of the between-

study heterogeneity in true effect sizes. Consequently, the residual heterogeneity

appears to reflect idiosyncratic study-level variation rather than systematic dif-

ferences in design, domain, or incentive implementation. In sum, once sampling

error and selective reporting are accounted for, incentive provision produces no

consistent or meaningful change in individual choice behaviour across the diverse

experimental tasks included in our dataset.

6 Conclusion

This study offers a systematic, causally identified evaluation of whether real mon-

etary incentives materially change behaviour in canonical individual decision-

making tasks. Pooling 584 effect sizes from studies that randomly vary incentive

provision, and analyzing them with an outlier-robust Bayesian hierarchical frame-

work, we show that the average effect of real incentives on decisions under risk

and over time is negligible. This conclusion holds across all estimation strategies,
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including models that adjust for small-study patterns and publication bias. While

incentive effects do vary across studies, the magnitude of this heterogeneity is

limited and explained only weakly by observable design features.

Interpretation of our results. A natural question concerns why we observe

virtually no incentive effects in the data. One traditional view holds that individ-

uals possess direct access to their preferences, and that reporting these preferences

requires little cognitive effort. If so, there is little reason to expect hypothetical

choices to diverge systematically from incentivized ones: instructing subjects to

“answer as if the choices were for real” may already suffice for stable preference

revelation (e.g. Tversky and Kahneman, 1992). Several economic studies similarly

find that incentive provision often fails to eliminate well-known “biases” (Grether

and Plott, 1979; Enke et al., 2023).

Moreover, real incentives can sometimes introduce complications rather than re-

solve them. Complex payment schemes, loss implementation rules, or unfamiliar

randomization procedures may impose additional cognitive load, increase task

misunderstanding, or generate experimenter-demand concerns (e.g. Camerer and

Hogarth, 1999; Hertwig and Ortmann, 2001). In such cases, incentives may add

noise rather than improve preference elicitation. This possibility is consistent

with our finding that the only clear departures from the overall null effect occur

in mixed gain–loss decisions—domains where incentives are typically implemented

via loss-from-endowment mechanisms known to generate house-money effects and

other framing distortions. Thus, these deviations likely reflect artefacts of imple-

mentation rather than genuine incentive responsiveness.

Noisy cognition. A very different interpretation comes from recent research

arguing that many patterns of choice under risk and over time may arise not

from stable preferences, but from systematic cognitive frictions. In these models,

behaviour is shaped by noisy number perception, imprecise mental representa-

tions, or probabilistic computation rather than by the optimization of a well-

defined utility function (Khaw, Li and Woodford, 2021; Oprea, 2024). Related
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experimental evidence demonstrates that seemingly innocuous manipulations of

numerical format—such as displaying outcomes in different numerical units—can

produce systematic changes in observed behaviour (e.g. Garagnani and Vieider,

2025; Oprea and Vieider, 2025).

Within this noisy-cognition framework, we would expect incentives to influence

choices only to the extent that they increase attention and thereby reduce pro-

cessing noise. This prediction stands in sharp contrast to the “easy-access-to-

preferences” account discussed above, under which hypothetical and incentivized

choices should be similar precisely because preferences are readily retrieved. Our

findings speak directly to this incentive-based attention mechanism: we see no

systematic shift in mean decisions when incentives are introduced. Thus, while

our results are entirely consistent with the idea that cognitive frictions shape be-

haviour, they suggest that standard monetary incentives do not, on their own,

attenuate those frictions in the kinds of tasks studied here.

Taken together, the evidence presented here offers a clear conclusion: real mon-

etary incentives do not materially alter behaviour in the canonical choice tasks

used to study risk and time preferences. We caution against overgeneralizing this

conclusion: incentives undoubtedly matter in domains involving real effort, strate-

gic interaction, or costly actions outside the laboratory—contexts not examined

here. But for the study of individual decision making under risk and over time,

our results call for a reassessment of standard experimental practices and a recon-

sideration of when incentive provision is truly necessary.
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ONLINE APPENDIX

A Search Strategy and Additional Details

A.1 Full Search Terms

The primary search was conducted in April 2024 using Web of Science (All Databases),
across research areas including Psychology, Behavioral Sciences, and Business Eco-
nomics. The following Boolean search string was used:

((hypothetical OR fictive) AND (real OR actual) AND (incentive
OR reward OR payoff))

This search yielded 526 records. An additional 103 papers were identified through
backward citation searches, and 106 papers through Peter Wakker’s annotated
bibliography (search term: “real incentives/hypothetical choice”). We then shared
the preliminary list of papers we had screened for inclusion on the most commonly
used mailing lists (ESA and JDM Society) to solicit additional articles and un-
published results we might have missed, which yielded a further 29 papers.

A.2 Inclusion and Exclusion Details

Studies were included if:

1. They compared behavior under hypothetical and real incentives.

2. The incentive manipulation occurred within tasks involving risk or intertem-
poral choice.

3. The ranges of magnitudes, probabilities, or delays were held constant or
directly comparable across incentive conditions.

Studies were excluded if real and hypothetical conditions differed in:

• reward magnitudes,

• probability ranges,

• time delays,

• commodity type,

• participant recruitment.

These exclusions helped prevent confounding influences, such as magnitude, delay,
commodity, or demographic effects. In total, 75 studies were excluded on these
grounds.
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B Outcome Coding Details

B.1 Temporal Discounting

We coded the following outcomes:

• Proportion of choices for smaller-sooner versus larger-later rewards.

• Indifference points and Area Under the Curve (AUC) measures.

• Estimated discounting parameters (exponential, hyperbolic, quasi-hyperbolic).

B.2 Risk Taking

We coded:

• Proportion of risky versus safe choices.

• Certainty equivalents and/or AUC of the utility function.

• Prospect Theory parameter estimates:

– utility curvature,

– probability weighting,

– loss aversion.

• Balloon Analogue Risk Task (BART) measures.

43



C Effect Size Computation: Full Formulas
For each study, we computed Cohen’s d using the information reported (test statis-
tics, summary moments, or regression output). Throughout, N1 and N2 denote
the sample sizes in the real and hypothetical conditions, respectively. For within-
subject designs, N denotes the number of paired observations (participants provid-
ing both responses), and ρ denotes the within-subject correlation when available.
We report two variants of the effect size: d0 (assuming ρ = 0 when correlation is
unavailable) and, where applicable, d0.5 (an alternative assuming ρ = 0.5).

C.1 Between-subject designs

Directly reported d: If Cohen’s d was reported, we used it directly:

d0 = d0.5 = d.

t statistic: For an independent-samples t test:

d0 = d0.5 = |t|
√

1

N1

+
1

N2

.

F statistic: For a two-group comparison reported as an ANOVA F statis-
tic:

d0 = d0.5 =
√
F

√
1

N1

+
1

N2

.

Mann–Whitney test using Z: When a standardized Z statistic was reported,
we first computed

r =
|Z|√

N1 +N2

, d0 = d0.5 =
2r√
1− r2

.

Mann–Whitney test using U : When the Mann–Whitney U statistic was re-
ported, we converted U to Z via

Z =
U − N1N2

2√
N1N2(N1+N2+1)

12

, r =
|Z|√

N1 +N2

, d0 = d0.5 =
2r√
1− r2

.

χ2 statistic: When a χ2 statistic was reported:

r =

√
χ2

√
N1 +N2

, d0 = d0.5 =
2r√
1− r2

.
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Means and standard deviations: When group means and SDs were available,
we computed the pooled SD

sp =

√
(N1 − 1)s21 + (N2 − 1)s22

N1 +N2 − 2
,

and then
d0 = d0.5 =

|X̄1 − X̄2|
sp

.

If SDs were not reported, we recovered them from other summary statistics. When
a standard error was reported, we used s = SE

√
N . When a 95% confidence

interval for a mean was reported as [CI l, CIh], we computed

X̄ =
CI l + CIh

2
, SE =

CIh − CI l

2z
, z = 1.96.

Regression-based effect sizes: When effect sizes were derived from regres-
sion output, we first translated the regression coefficients into an implied contrast
between the real and hypothetical conditions, denoted by ∆ (e.g., a difference
between two condition-specific estimates, or a linear combination of coefficients
when interactions were present). We then standardized this contrast by an ap-
propriate scale parameter S constructed from reported standard deviations (or
closely related quantities) and, when necessary, a two-sample scaling factor.

Specifically, for specifications that directly yielded condition-specific levels (e.g.,
separate intercepts or mean-equivalent coefficients), we treated the two coefficients
as µ̂1 and µ̂2 and computed

d =
|∆|
S

, ∆ = µ̂1 − µ̂2,

where S was the pooled SD (or a pooled SD analogue) built from the reported
within-condition SDs.

For specifications that reported the contrast as a single regression coefficient, we
set ∆ equal to that coefficient and computed a standardized mean-difference equiv-
alent using an externally provided SD estimate and the standard two-sample scal-
ing:

d =
|∆|
S

√
1

N1

+
1

N2

.

When interaction terms were present and the extraction provided multiple disper-
sion components per condition, we constructed two variants of the scale parameter
S: one that combines dispersion components assuming zero covariance (yielding
d0), and an alternative that imposes a nonzero covariance structure consistent
with ρ = 0.5 (yielding d0.5). In all regression-based cases, d was defined as the
absolute standardized real–hypothetical contrast, and we set d0 = d0.5 whenever
the dispersion construction did not depend on the covariance assumption.
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C.2 Within-subject designs

Let N denote the number of paired observations, and we define NΣ as the sum of
the reported group sizes when needed for rank-based conversions.

Directly reported d: If Cohen’s d was reported, we used it directly:

d0 = d0.5 = d.

t statistic: If the within-subject correlation ρ was not available, we computed

d0 = |t|
√

2

N
, d0.5 = |t|

√
1

N
.

If ρ was available, we used

d0 = d0.5 = |t|
√

2(1− ρ)

N
.

F statistic: Analogously, for a within-subject F statistic:

d0 =
√
F

√
2

N
, d0.5 =

√
F

√
1

N
(ρ unavailable),

and when ρ was available,

d0 = d0.5 =
√
F

√
2(1− ρ)

N
.

Wilcoxon signed-rank using Z: When a standardized Z statistic was re-
ported:

r =
|Z|√
NΣ

, d0 = d0.5 =
2r√
1− r2

.

Wilcoxon signed-rank using V : When the Wilcoxon signed-rank statistic V
was reported, we converted it to Z via

Z =
V − N(N+1)

4√
N(N+1)(2N+1)

24

, r =
|Z|√
NΣ

, d0 = d0.5 =
2r√
1− r2

.

χ2 statistic: When a χ2 statistic was reported:

r =

√
χ2

√
NΣ

, d0 = d0.5 =
2r√
1− r2

.
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Means and standard deviations: Let ∆ = |X̄R− X̄H |. If ρ was not available,
we used

Swithin,0 =

√
s2R + s2H√

2
, Swithin,0.5 =

√
s2R + s2H − sRsH ,

and computed

d0 =
∆

Swithin,0
, d0.5 =

∆

Swithin,0.5
.

If ρ was available, we first computed the SD of the difference

S∆ =
√
s2R + s2H − 2ρsRsH ,

and then set
Swithin =

S∆√
2(1− ρ)

, d0 = d0.5 =
∆

Swithin
.

D Standard Error of Cohen’s d

D.1 Between-subject designs

For between-subject designs, the standard error of d was computed as

se(d) =

√
N1 +N2

N1N2

+
d2

2(N1 +N2)
.

D.2 Within-subject designs

When ρ was not available, we used

se(d0) =

√
2

N
+

d20
N
, se(d0.5) =

√
1

N
+

d20.5
2N

.

When ρ was available, we applied the correlation adjustment

se(d0) = se(d0.5) =

√(
2

N
+

d2

N

)
(1− ρ).
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E Coded Study Characteristics
Table 2 lists all variables extracted from each study.

Table 2: Full List of Coded Study Characteristics

Variable Description

Source of Data
source_lab_exp =1 if laboratory experiment
source_class_exp =1 if classroom experiment
source_field_exp =1 if field experiment
source_online_exp =1 if online experiment
source_other_exp Other type of experiment

Treatment
within_subjects = 1 if the design is within-subjects
between_subjects = 1 if the design is between-subjects

Location of Experiment
loc_country Country
loc_continent Continent

Subject Pool
subject_uni =1 if university students/staff
subject_general =1 if general population
subject_other Other population group

Choice Trials
choice_list =1 if choice list
choice_binary =1 if sequential binary choice
choice_iterated =1 if iterated adjusting amount
choice_bid =1 if bid
choice_BART =1 if balloon analogue risk task
choice_other Other choice task

Chances of Realization
prob_subject Probability that a subject is selected for payment
prob_decision Probability that a decision is realized for payment
prob_overall Overall probability of a real payment

Domain
domain_gain =1 if all outcomes positive
domain_loss =1 if all outcomes negative
domain_mixed =1 if positive and negative outcomes mixed within trials
domain_gl =1 if positive and negative outcomes appear across trials
endowment Endowment provided to cover losses

Reward Type
reward_money =1 if monetary rewards
reward_health =1 if health-related goods
reward_other Other type of outcomes

Range Information
reward_low Smallest reward amount
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Continued from previous page

Variable Description

reward_high Largest reward amount
prob_low Lowest probability
prob_high Highest probability
delay_low Shortest delay
delay_high Longest delay

Publication Status
published_regular =1 if published in peer-reviewed journal
published_econ =1 if published in economics journal
published_econ_top5 =1 if published in “Top 5” economics journal
published_other_field Other journal field/category
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F Meta Regression Results

Table 3: Meta Regression Table

predictors (1) (2) (3) (4)

Time (vs Risk) −0.048 −0.048 −0.042 −0.041
(0.035) (0.036) (0.036) (0.036)

Within (vs Between) 0.108 0.106 0.090 0.091
(0.053) (0.053) (0.057) (0.057)

Loss (vs Gain) 0.023 0.022 0.024 0.024
(0.050) (0.049) (0.050) (0.050)

Mixed (vs Gain) -0.119 -0.118 -0.133 -0.134
(0.039) (0.039) (0.039) (0.040)

Param (vs Nonpar) −0.002 0.000 0.004 0.004
(0.035) (0.035) (0.035) (0.035)

Field (vs Lab) −0.013 −0.014 −0.079 −0.076
(0.101) (0.099) (0.151) (0.148)

Online (vs Lab) −0.028 −0.027 −0.033 −0.035
(0.074) (0.074) (0.080) (0.080)

Pay all Ss 0.028 0.027
(0.059) (0.061)

Prob. Ss Paid 0.033 0.030
(0.064) (0.066)

Inc. all Tasks 0.072 0.071 0.042 0.041
(0.056) (0.056) (0.060) (0.061)

Published 0.072 0.074 0.068 0.063
(0.130) (0.132) (0.170) (0.172)

EconJ −0.027 −0.028 −0.016 −0.016
(0.057) (0.057) (0.064) (0.063)

Africa (vs N.America) 0.070 0.067
(0.167) (0.166)

Asia (vs N.America) 0.127 0.128
(0.093) (0.092)

Europe (vs N.America) 0.003 0.005
(0.070) (0.069)

Oceania (vs N.America) −0.026 −0.026
(0.178) (0.180)

Constant −0.070 −0.074 −0.070 −0.069
(0.142) (0.144) (0.175) (0.180)

Effects significant at the 5% level are highlighted in bold, and standard errors are
reported in parentheses.
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G Details for Hierarchical Bayesian Model

G.1 Hyperpriors on parameters

The hyperpriors for the parameters in BHMEM are specified as

µ ∼ N (0, 5),

ν ∼ Exponential(0.5),

σ ∼ Exponential(1),

τx ∼ Exponential(1).

G.2 Stan Code
1 data{
2 int <lower=1> N;
3 vector[N] cd;
4 vector[N] se;
5 int <lower=1> K;
6 matrix[N,K] x;
7 int <lower=1> P;
8 array[N] int pid;
9 }

10 parameters{
11 vector[N] eps;
12 vector[K] beta;
13 vector[P] mup;
14 real <lower=2> df;
15 real <lower=0> sigma;
16 real <lower=0> tau;
17 }
18 transformed parameters {
19 vector[N] dhat = x * beta + mup[pid] + eps;
20 }
21 model{
22 sigma ~ exponential( 1 );
23 tau ~ exponential( 1 );
24 beta ~ normal( 0 , 5 );
25 df ~ exponential( 0.5 );
26 // residuals distribution:
27 eps ~ student_t(df , 0, sigma);
28 // distribution of paper -level residuals
29 mup ~ normal( 0 , tau );
30 // measurement error model
31 cd ~ normal(dhat , se);
32 }
33 generated quantities {
34 vector[N] log_lik;
35 for (i in 1:N)
36 log_lik[i] = normal_lpdf(cd[i] | dhat[i], se[i]);
37 }
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