

Incentive effects on decisions under risk and over time: A Meta-Analysis*

Yuchi Li¹ and Ferdinand M. Vieider¹

¹*RISLαβ, Department of Economics, Ghent University*

20 November 2025

Abstract

Real monetary incentives are a core principle of experimental economics, yet evidence on whether they materially affect individual decisions under risk and over time remains mixed. We provide a quantitative reassessment by analyzing 584 standardized effect sizes from 70 papers that randomly vary whether choices are hypothetical or incentivized. We estimate the underlying incentive effect using an outlier-robust Bayesian hierarchical measurement-error model, and supplement it with multiple publication-bias diagnostics embedded within a Bayesian model-averaging framework based on leave-one-out cross-validation. Across all approaches, the estimated incentive effect is extremely small. The posterior mean lies well within the region of negligible effects (Cohen's $d \approx 0.05$). Although true effect sizes are heterogeneous, this variation is only weakly related to study characteristics. Significant moderators include design features such as within- versus between-subjects implementation and decisions involving mixed gain-loss outcomes. Overall, real incentives do not materially alter behaviour in standard individual decision tasks.

1 Motivation

The use of real monetary incentives has long been a defining principle of experimental economics. Classic contributions argued that financially salient and dominant incentives are essential for eliciting true preferences in the laboratory, ensur-

*This research was supported by the Research Foundation—Flanders under the project “Causal Determinants of Preferences” (G008021N). We are indebted to Michael Birnbaum and Peter Wakker for helpful comments and discussions. We did not register a pre-analysis plan, since the current manuscript contains a meta-analysis of existing papers. All errors remain our own.

ing that participants' decisions reflect the economic tradeoffs under study (Smith, 1982; Plott, 1986). Although this position has shaped decades of experimental practice, the debate over the practical importance—and even the necessity—of real incentives has never been fully resolved. There is widespread agreement that real payments are indispensable in some domains, such as eliciting willingness to pay for socially desirable outcomes (Carson and Groves, 2007). Yet for individual decision-making tasks involving risk or intertemporal tradeoffs, the evidence is more mixed. Early influential studies reported sizable differences between hypothetical and incentivized choices (e.g. Holt and Laury, 2002), whereas more recent high-stakes and large-sample experiments often find negligible or no effects (e.g. Brañas-Garza, Estepa-Mohedano, Jorrat, Orozco and Rascón-Ramírez, 2021; Brañas-Garza, Jorrat, Espín and Sánchez, 2023). As a consequence, the decision of whether to incentivize subjects frequently remains guided more by intuition and convention than by a systematic assessment of empirical evidence.

In this paper, we provide a comprehensive quantitative assessment of the effect of incentive provision on individual decision-making in tasks involving risk and delays. We assemble the universe of experimental studies that vary incentives between real and hypothetical conditions and extract 584 effect-size estimates from 70 papers. By encoding all contrasts in a common metric (Cohen's d), we systematically characterize both the magnitude and the direction of incentive effects across diverse designs and decision contexts. We then analyze these effect sizes using state-of-the-art Bayesian hierarchical meta-analytic methods, which allow us to separate true effects from sampling noise, assess the presence of publication bias, and quantify heterogeneity across studies and experimental features.

Why meta-analysis. Although real monetary incentives are traditionally viewed as essential for eliciting economically meaningful choices, the theoretical rationale for strong incentive effects in individual decision tasks is far from unequivocal. Incentives may suppress experimenter-demand effects or reduce careless responding, but they need not eliminate systematic violations of expected utility or time-consistent discounting. Classic work on preference reversals, for instance, showed

that behavioural regularities persisted or even intensified when salient incentives were introduced (Grether and Plott, 1979), and more recent work documents that many well-known biases remain stable across hypothetical and incentivized settings, even with high stakes (Enke, Gneezy, Hall, Martin, Nelidov, Offerman and Van De Ven, 2023; Gneezy et al., 2024). Thus, theory offers no clear prediction about when or whether incentives should matter in individual decision-making tasks.

Empirically, the existing evidence is similarly inconsistent. Influential early studies such as Holt and Laury (2002) reported substantial differences between hypothetical and incentivized choices, but these findings derive from relatively small samples and highly specific elicitation methods. More recent high-stakes or large-sample studies frequently find much smaller or null effects. Because individual studies differ widely in design, stakes, implementation, and measurement, it is difficult to infer whether such discrepancies reflect true heterogeneity, sampling variation, or selective reporting. A cumulative and principled assessment of the experimental evidence is therefore required.

Previous meta-analyses have examined related questions—such as incentive effects on time discounting (Matousek, Havranek and Irsova, 2022), present bias (Imai, Rutter and Camerer, 2021; Cheung, Tymula and Wang, 2023), or loss aversion (Brown, Imai, Vieider and Camerer, 2024)—but these studies rely entirely on *between-study* variation in incentive provision. Such comparisons lack causal identification: incentivized and hypothetical studies often differ systematically in stakes, design, task domain, or population, and residual heterogeneity is large (Brown et al., 2024). As a result, between-study contrasts cannot isolate the effect of incentives from confounding design features. For example, hypothetical studies typically use higher nominal stakes than incentivized ones; even with statistical controls, identification requires strong assumptions about accurate measurement of stakes and linearity of stake effects, conditions unlikely to hold when the two distributions exhibit little overlap.

Our approach overcomes these limitations by focusing exclusively on studies that *experimentally vary* incentive provision within the same design. We extract 584 standardized effect sizes from 70 papers directly comparing hypothetical and real incentives, enabling a causal interpretation of incentive effects. We analyze these effect sizes using a robust Bayesian hierarchical meta-analytic framework that separates true effects from sampling noise, accommodates heavy-tailed heterogeneity, explicitly models publication bias, and incorporates study characteristics through meta-regression.

Key findings. We begin with a nonparametric examination of the 584 experimentally identified effect sizes. The raw distribution of encoded effects already points to the central result of this paper: the mode, median, and mean effect sizes all lie arbitrarily close to zero. More than half of all effects fall below 0.2 in absolute value, and the signed distribution is almost perfectly symmetric around zero. These patterns strongly suggest that, if incentives influence choices at all, the effect must be very small.

We next turn to our Bayesian hierarchical measurement-error model (BHMEM), which formally separates true heterogeneity from sampling noise and aggregates the experimentally identified causal effects from each study into a coherent population-level estimate. Unlike classical meta-analytic tools, the BHMEM allows us not only to reject the null, but—crucially—to *accept* it when the entire posterior for the mean lies within the region of negligible effects as classified by [Cohen \(1988\)](#). Under this fully Bayesian specification, the posterior for the population mean is narrowly concentrated near zero, and the 95% credible interval is contained entirely in the negligible range. This provides a rigorous demonstration that the true incentive effect on individual decisions under risk or over time is, on average, too small to be of practical relevance.

Small-study effects and publication bias. Because the largest reported incentive effects almost exclusively come from small, noisy studies, a natural concern is that these findings may be inflated by selective reporting rather than reflect-

ing genuine behavioural responses to incentives. In particular, the most extreme effect sizes in either direction almost always come from relatively small studies with large standard errors, raising the possibility that exaggerated findings reflect sampling variability rather than genuine incentive effects. This makes publication bias a natural concern and motivates a systematic evaluation using multiple complementary diagnostic tools.

We therefore examine small-study patterns using a broad set of methods. Alongside classic visual diagnostics—such as funnel plots and Egger-type precision regressions (Egger, Smith, Schneider and Minder, 1997)—we deploy publication-bias models that explicitly adjust the estimated mean effect. These include the precision–effect test and precision–effect estimate (PET–PEESE; Stanley, 2008; Stanley and Doucouliagos, 2014), the stepwise selection framework of Vevea and Hedges (1995), and the continuous-selection model of Andrews and Kasy (2019). Each approach embodies distinct assumptions about how selective reporting operates—whether through linear small-study patterns, discrete p -value thresholds, or smooth changes in publication probabilities across test statistics. Examining them side by side thus provides a robust assessment. In addition to their standard fixed-effects formulations, we embed all of these models within our Bayesian hierarchical measurement-error framework (BHEM), allowing them to account for between-paper heterogeneity and measurement error in a unified way.

The results diverge in predictable ways. PET–PEESE finds no evidence of systematic publication bias. Classical stepwise selection models à la Vevea and Hedges (1995) imply strong selection based on statistical significance, whereas regression-based and spline-based approaches detect little or no such bias. Crucially, however, even under models that suggest substantial selective reporting, like Vevea–Hedges, the bias-corrected mean effect remains extremely small and lies well within the negligible region. Thus, while the methods differ in their implied degree of publication bias, they agree that correcting for it does not reveal any substantively meaningful effect of real versus hypothetical incentives.

Bayesian model averaging within a hierarchical framework. To synthesise the competing assumptions embodied by the various publication-bias models, we implement a prediction-optimized Bayesian model-averaging procedure that operates *within the hierarchical structure of the BHMEM*. Rather than averaging fixed-effect models using Bayes factors—as is common in existing software implementations—we derive model weights using stacking based on leave-one-out cross-validation (Vehtari, Gelman and Gabry, 2017; Yao, Vehtari, Simpson and Gelman, 2018). This approach allocates weight according to each model’s *predictive* contribution and is well suited to hierarchical, heavy-tailed specifications, for which Bayes-factor weighting is often unstable.¹

Under this criterion, the hierarchical measurement-error model receives the highest weight, while publication-bias corrections—such as PET–PEESE, Vevea–Hedges selection models, and Andrews–Kasy selection functions—receive modest but non-negligible weight when they provide complementary predictive structure. The resulting model-averaged estimate,

$$\mu_{\text{PoBMA}} = 0.051 \quad (95\% \text{ CrI } [0.024, 0.079]),$$

remains small and entirely within the negligible region. The prediction-optimized averaging framework thus reinforces, rather than overturns, the conclusion obtained from the hierarchical analysis alone.

True heterogeneity. Although the mean effect is negligible, the estimated heavy-tailed distribution of true effect sizes indicates that incentive effects vary meaningfully across studies, with a nontrivial proportion of studies exhibiting small but real deviations in either direction. We find no differences in incentive effects between decisions in the risk and time domain. By contrast, incentive effects are more pronounced in the loss domain and especially in mixed gain-loss tasks than for gains. Meta-regression reveals that real incentives make subjects mod-

¹For comparison, Maier, Matzke, Rouder, Wagenmakers and Ly (2022) propose a Bayes-factor-based averaging scheme for fixed-effect meta-analytic models. Our approach differs in that all publication-bias models are embedded within a hierarchical measurement-error framework and combined using LOO-based stacking.

estly more risk averse for pure losses but considerably more risk *seeking* for mixed lotteries. Both patterns are fully consistent with house-money or endowment-integration mechanisms inherent in standard implementations of monetary losses. Other study characteristics—such as whether all subjects are paid, whether all decisions are incentivized, whether the study was conducted online or in the field, or whether it was published in economics—explain little additional variation.

Taken together, these results lead to a strikingly robust conclusion: *real monetary incentives have, on average, no meaningful impact on individual decision-making under risk or over time*. The small pockets of heterogeneity that do emerge are readily explained by implementation artefacts rather than by genuine motivational effects of incentives. In particular, the deviations we observe in mixed gain-loss choices arise in domains where incentives are almost always implemented through loss-from-endowment procedures, which are known to induce house-money effects. These patterns therefore reflect the psychology of loss implementation, not heightened sensitivity to monetary incentives.

Paper organization. This paper proceeds as follows. Section 2 describes our literature search, inclusion criteria, and coding. Section 3 examines raw effect sizes, introduces our preferred Bayesian Hierarchical Measurement Error Model, and examines aggregate model-based estimates. Section 4 examines small study effects, and conducts the Bayesian Model Averaging. Section 5 uses nonparametric analysis and meta-regression to examine true heterogeneity in study effects. Section 6 concludes the paper.

2 Methods

2.1 Literature Search and Study Selection

We conducted a comprehensive search for empirical studies comparing decisions made under *real monetary incentives* with decisions made under *hypothetical* in-

centives in tasks involving risk, uncertainty, or intertemporal choice. We carried out the primary search in April 2024 using Web of Science (All Databases), without restrictions on publication year or document type.

Our search terms captured contrasts between hypothetical and real rewards as well as decision contexts involving risk or delay. We screened reference lists of all identified studies, and we supplemented the search using Peter Wakker’s annotated bibliography, which contains a dedicated category for variation in incentives. We furthermore circulated our list of studies on the ESA and JDM-society mailing lists to elicit any studies we might have missed. This process yielded 526 initial records and 238 additional records from backward citation searches, bibliographic sources and society feedback.

We included studies if they (i) compared hypothetical and real incentives using behavioral measures, and (ii) held constant the ranges of reward magnitudes, probabilities, or delays across conditions. These criteria ensure that incentive effects are not confounded with known context effects such as the magnitude effect in temporal discounting or stake effects across outcome ranges. We excluded seventy-five studies because they violated this design requirement. The final dataset contains 70 papers, including 24 temporal discounting studies and 53 risk-taking studies (some papers include both risk and delay tasks, and are thus counted in both categories).

Online Appendix [A](#) provides full search terms, details on inclusion and exclusion criteria, and a list of excluded papers. Online Appendix [H](#) lists all included papers.

2.2 Coding of Effects and Study Characteristics

For each study, we coded a measure of the effect of incentives on choice behaviour. A first challenge arose from the wide variation in reporting standards: many papers did not focus explicitly on incentive effects or reported them only indirectly.

When papers reported multiple effect sizes—for example, because they included

several experimental tests, reported both nonparametric and structural estimates, or estimated multiple behavioural parameters from the same structural model—we included all eligible effects (we will explicitly account for their statistical dependence in the hierarchical structure of our model). After excluding five effects for which the direction of the effect could not be established, we were left with 66 papers containing 83 distinct experiments, which between them contribute a total of 584 effect sizes. These constitute the primary unit of analysis.

To compare effects across heterogeneous reporting formats, we converted all incentive contrasts to *Cohen’s d* (Cohen, 1988). When papers reported group means and standard deviations, we computed *d* using the pooled standard deviation. When papers reported inferential statistics (e.g., *t*, *F*, or *z* statistics, or regression coefficients), we converted these to *d* using standard transformations. Separate formulas were used for between-subject and within-subject designs to account for the corresponding correlation structures in choice behaviour. Online Appendices C and D provide the full formulas for computing effect size *d* and its standard error.

A second challenge arose from the diversity of choice architectures. A substantial majority of effect sizes were derived from *nonparametric* behavioural measures. These include proportions of patient versus impatient choices in intertemporal tasks, proportions of risky versus safe choices under risk, indifference points, and Area Under the Curve (AUC) measures. In total, 440 of the 584 effect sizes fall into this category. For intertemporal choice, we coded these measures so that larger values of Cohen’s *d* indicate *greater impatience* under real incentives. Analogously, for risky decisions we coded nonparametric contrasts so that larger values correspond to *increased risk aversion*.

The remaining effect sizes were derived from *parametric* estimations. These include parameters capturing constructs such as utility curvature or loss aversion, as well as discounting parameters in intertemporal choice. We only included parametric measures when their directional interpretation in terms of risk aversion or impatience was unambiguous. For example, utility curvature parameters con-

sistently map onto risk aversion; proportional discounting parameters such as k in $1/(1 + kt)$, where t is the time delay, likewise provide a monotonic proxy for impatience. Our dataset contains quasi-hyperbolic $(\beta-\delta)$ discounting estimates. Quasi-hyperbolic estimates were included because both β and δ^{-1} can be interpreted as proxies for impatience in a behaviourally consistent manner. We did not include fully hyperbolic (or time sensitivity) parameters, nor probability sensitivity parameters, since they do not map monotonically onto impatience or risk aversion and would therefore not allow for consistent coding.

In addition to the key effect sizes, we coded major design features of each study, including the experimental setting (laboratory, field, online), the subject population (students vs. general population), reward type (monetary vs. non-monetary), decision domain (gains, losses, mixed), and the incentive scheme (e.g., paying a subset of subjects, paying one randomly selected choice, paying all choices). Online Appendix E provides the full list of variables and operational definitions.

Finally, because parametric and nonparametric effect sizes may differ systematically in scale, noise properties, and behavioural interpretation, we conduct extensive robustness checks and include parameter type as a moderator in our meta-regression analyses. These analyses confirm that our main results are not driven by differences between nonparametric and parametric measures.

3 Aggregate results

We present our findings in several stages, starting from an aggregate analysis. We first describe nonparametric patterns in the data. We then estimate the meta-analytic mean using a hierarchical Bayesian measurement error model and examine the posterior inferences based on that model.

3.1 Incentivized vs hypothetical studies: raw effects

Descriptive results. We begin by presenting descriptive evidence on the distribution of effect sizes across all decision types and outcome domains. Panel A of Figure 1 plots the density of the *absolute values* of all 584 encoded effect sizes d_i . It also plots the distribution of the 440 effect sizes based on non-parametric measures for comparison. The distribution is heavily concentrated near zero: fully 51% of all effect sizes are smaller than 0.2. Thus, more than half of the reported effects do not even reach Cohen’s threshold for a “small” effect. Both the mode and median effect sizes are therefore best characterized as negligible. An additional 36% of effect sizes fall into Cohen’s “small” category, while medium-sized and large effects are rare, at 10% and 3% respectively. The distribution of nonparametric effects closely resembles the overall distribution.

Because Panel A represents absolute effect sizes, it does not capture the *direction* of the incentive effect. Beyond whether incentives have any effect on behaviour, an important question is whether the reported effects exhibit a consistent directional pattern. To address this, we coded all effect sizes so that positive values indicate greater risk aversion (or impatience) under real incentives, whereas negative values indicate greater risk seeking (or patience).

Panel B of Figure 1 plots the distribution of signed effect sizes on the negative–positive continuum (separately using the full data and the nonparametric measures only). The distribution is strikingly symmetric around zero: the mode ($= 0$), median ($= 0.022$), and mean ($= 0.021$) all lie extremely close to zero. Moreover, larger positive effects (greater risk aversion or impatience under real incentives) are almost perfectly counterbalanced by larger negative effects (greater risk seeking or patience under real incentives). In short, the descriptive evidence reveals *no coherent directional pattern* in the literature. Incentive effects pointing toward increased caution are nearly exactly offset by effects pointing in the opposite direction.

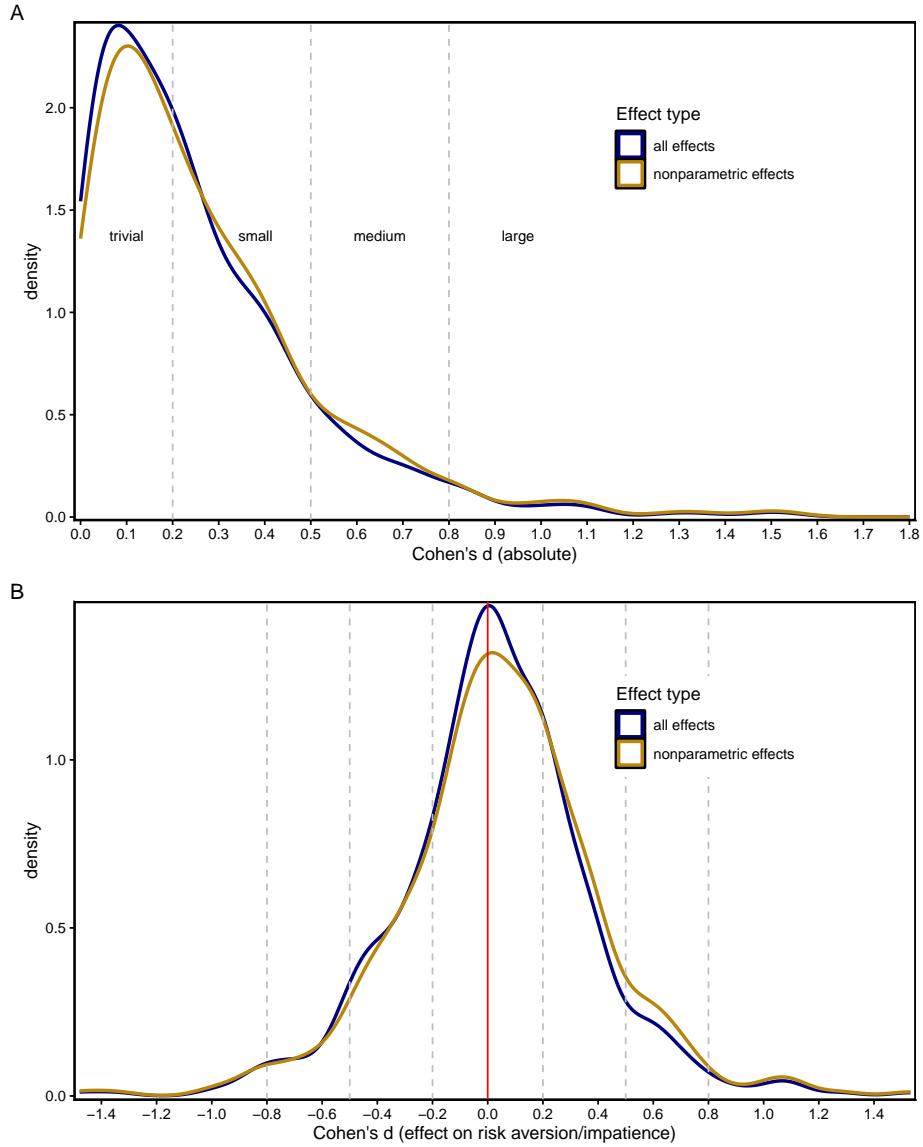


Figure 1: Probability density of Cohen's d

Distribution of 584 Cohen's d effect sizes across studies. Panel A shows the distribution of absolute effect sizes. Panel B shows the distribution preserving the sign of the effect, with positive values corresponding to increased risk aversion or impatience under real incentives, and negative values corresponding to increased risk seeking or patience.

3.2 Hierarchical Bayesian Model

To analyze the incentive effects statistically, we develop a Bayesian Hierarchical Measurement-Error Model (BHEMM). A hierarchical (random-effects) specification allows us to model genuine cross-study variation in true effect sizes, which we expect to be present based on the large number of studies and the diversity of behavioral tasks included in this meta-analysis. The Bayesian framework provides

additional flexibility to extend the model in response to substantive questions that arise from the data.

Hierarchical Bayesian Model with Experiment Cross-Classification. Our basic unit of analysis is Cohen’s d , representing the observational estimate of the incentive effect in study i . Each observed effect size d_i is measured with sampling uncertainty, for which we use the reported sampling variance se_i^2 . Following standard meta-analytic practice, we assume the measurement-error model

$$d_i \sim \mathcal{N}(\hat{d}_i, se_i^2), \quad (1)$$

where \hat{d}_i denotes the *true* (latent) effect size underlying study i . The hierarchical model then specifies how these latent true effects vary across studies. To accommodate potential outliers and true heterogeneity across studies, we model the distribution of the true effects using a Student- t specification:

$$\hat{d}_i \sim \text{Student-}t(\nu, \mu + \gamma_x, \sigma), \quad (2)$$

where μ is the population-level mean effect, σ is the between-study scale parameter (with σ^2 representing the variance in true effect sizes across studies), and where $\nu \geq 2$ denotes the degrees of freedom. Estimating ν lets the data determine the appropriate tail behaviour: small values of ν yield heavy tails that downweight outlying effect sizes, while for large values of ν the distribution is approximately normal. This makes the model robust to outliers without imposing strong assumptions about their presence.

In addition, we cross-classify effects to account for statistical dependency:

$$\gamma_x \sim \mathcal{N}(0, \tau_x^2). \quad (3)$$

The term γ_x introduces an experiment-level random effect, ensuring that all effect sizes originating from the same experiment share a common shift relative to the

overall mean. This induces the appropriate correlation among within-experiment estimates and prevents single experiments for which many outcomes are reported from disproportionately influencing the meta-analysis.

Under this specification, each observed effect size d_i combines two sources of variability: (i) sampling variance se_i^2 , arising from measurement error in the individual study, and (ii) hierarchical variance components governed by σ and τ_x^2 , capturing genuine heterogeneity in the underlying true effects across studies and experiments. The hierarchical model thus separates study-level noise from substantive cross-study variation and shrinks noisy estimates toward the overall mean μ .

Bayesian posterior inferences. We now deploy our BHEM to study the distribution of true effect sizes. We estimate the model in Stan ([Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li and Riddell, 2017](#)) using mildly regularizing hyperpriors [Gelman, Carlin, Stern, Dunson, Vehtari and Rubin \(2014\)](#), chosen to be at least one order of magnitude wider than the plausible ranges suggested by the data. The results reported here are not sensitive to reasonable variations in these hyperpriors. We assessed convergence by verifying the absence of divergent transitions and ensuring that all \hat{R} statistics are very close to 1, with $\hat{R} \leq 1.01$ accepted as an indication of satisfactory mixing. Online Appendix [G](#) reports full details, including the Stan code used; [Vieider \(2024\)](#) provides a tutorial introduction to Bayesian hierarchical modeling in Stan.

The estimated degrees of freedom of the Student- t distribution is $\nu = 2.154$ (95% CrI [2.004, 2.532]), confirming substantial tail heaviness and thus validating the Student- t specification as an outlier-robust choice. The estimated meta-analytic mean is $\mu = 0.043$. With a 95% credible interval (CrI) [-0.004, 0.092]), this mean is not statistically distinguishable from zero and falls entirely within the range of negligible effect sizes. Panel A of Figure [2](#) compares the raw effect sizes d_i to the posterior distribution of true effect sizes \hat{d}_i . The posterior distribution is substantially narrower, with 65% of all \hat{d}_i falling in the negligible-effect interval [-0.2, 0.2]. This illustrates meta-analytic shrinkage: each d_i is pulled toward the

meta-analytic mean in proportion to its standard error. The extent of shrinkage suggests that studies reporting larger effects tend to be relatively noisy—a point to which we will return below.

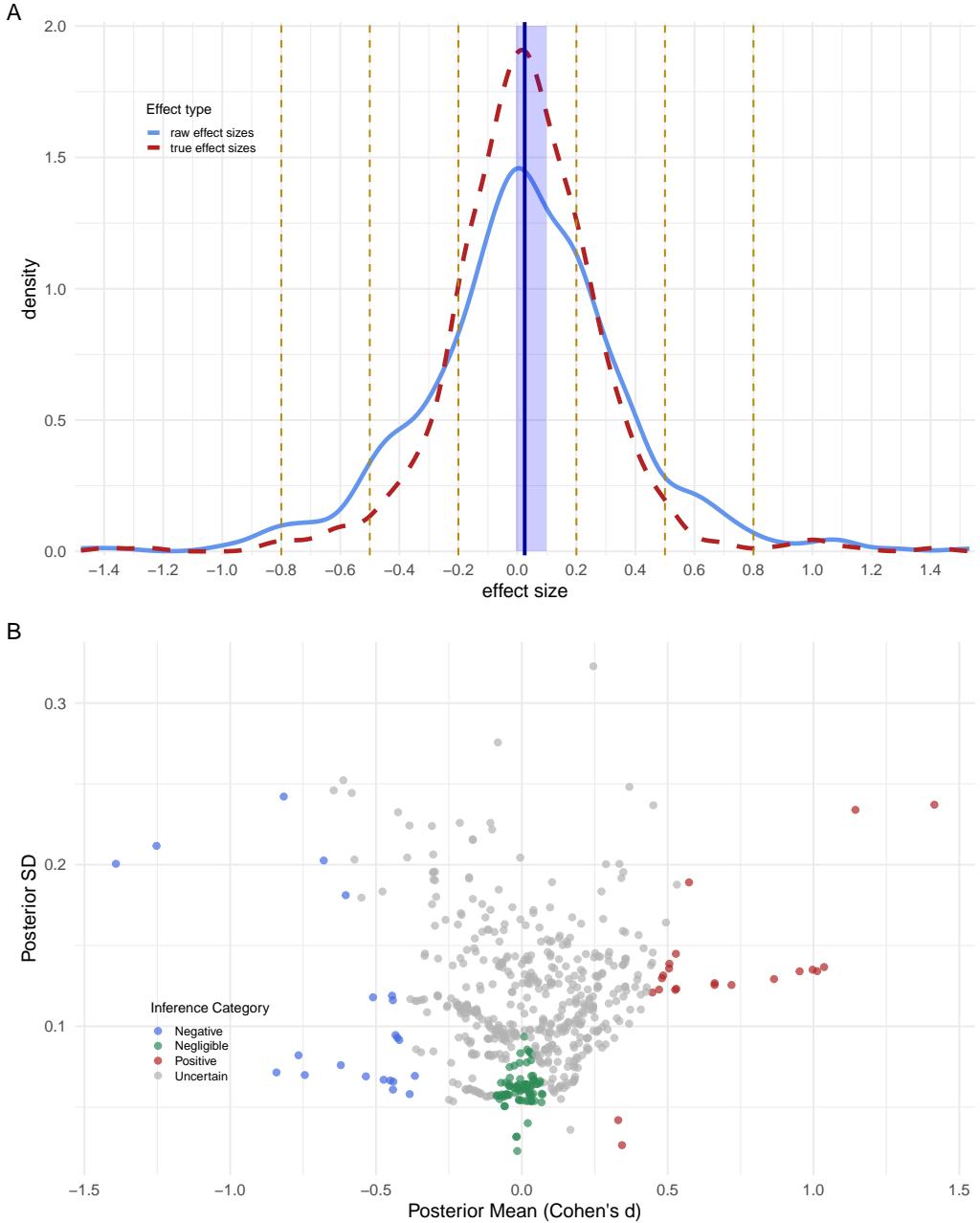


Figure 2: Posterior inferences on effect sizes

Posterior inferences from the BHMEM. Panel A compares the distribution of raw effect sizes d_i with the posterior distribution of true effect sizes \hat{d}_i . Panel B plots the posterior means \hat{d}_i (x-axis) against their posterior standard deviations (y-axis), which correspond to standard errors in frequentist terminology.

Meta-analytic shrinkage affects not only the estimated effect sizes but also the pre-

cision with which they are estimated. Because the posterior standard deviations sd_i of the true effects (equivalent to a standard error in frequentist statistics) incorporate both sampling variability and shrinkage toward the meta-analytic mean, they are typically smaller than the raw standard errors se_i . The implications for statistical significance are therefore ambiguous *ex ante*: shrinkage pulls effects toward zero, but it also reduces the uncertainty surrounding the estimate.

To assess statistical significance in our Bayesian framework, we define a *region of practical equivalence* (RPE) around the null hypothesis of no effect. Following Cohen’s conventions, it is natural to take the interval $[-0.2, 0.2]$ to represent negligible effects. We classify a study as “positive” if at least 95% of its posterior mass lies above 0.2, and as “negative” if at least 95% lies below -0.2 . Studies with at least 95% of their posterior mass within the RPE are classified as unambiguously negligible.² All remaining studies are classified as “uncertain”, inasmuch as they do not provide sufficient information for unambiguous classification.

Panel B of Figure 2 plots the true posterior effect size \hat{d}_i against its standard deviation sd_i , and colour-codes the points depending on their classification. Overall, 3.8% of studies show a positive effect and 3.8% a negative effect. Combined, these 7.6% exceed the 5% one would expect by chance alone, suggesting the presence of (moderate) genuine heterogeneity in true effects—a topic we will examine at some length below. By contrast, 14.0% of studies are unambiguously negligible. These provide *positive evidence of absence*, not merely absence of evidence: for these studies, a practically null effect is genuinely likely. Such cases are almost twice as common as positive and negative effects *combined*. Finally, 78.4% of studies are too imprecise or too small to yield a clear conclusion, reflecting low power or unfavorable signal-to-noise ratios.

The pattern of results raises the question of whether publication bias may contribute to the prevalence of small and statistically significant effects. We turn to this issue next.

²The choice of a 95% posterior probability threshold follows statistical convention; other thresholds would lead to qualitatively similar conclusions.

4 Is there publication bias?

The meta-analytic results above indicate that larger effects—whether positive or negative—tend to be associated with greater sampling noise. This may simply reflect sampling variation in small studies, but it may also be symptomatic of publication bias. We therefore begin with a set of nonparametric diagnostics.

4.1 Nonparametric examination of small study effects

Panel A of Figure 3 presents a funnel plot of the raw effect sizes d_i against $-\ln(se_i)$, a measure of the precision of the effect. More precise studies thus appear at the top of the graph. The figure shows a clear pattern: the most extreme effect sizes (which are both positive and negative) occur almost exclusively in imprecise studies, whereas the most precise studies tend to cluster around zero, with only a few small positive exceptions. In the absence of small-study effects, the estimated effect sizes should not systematically vary with their standard errors; precise and imprecise studies would be centered on the same underlying value.

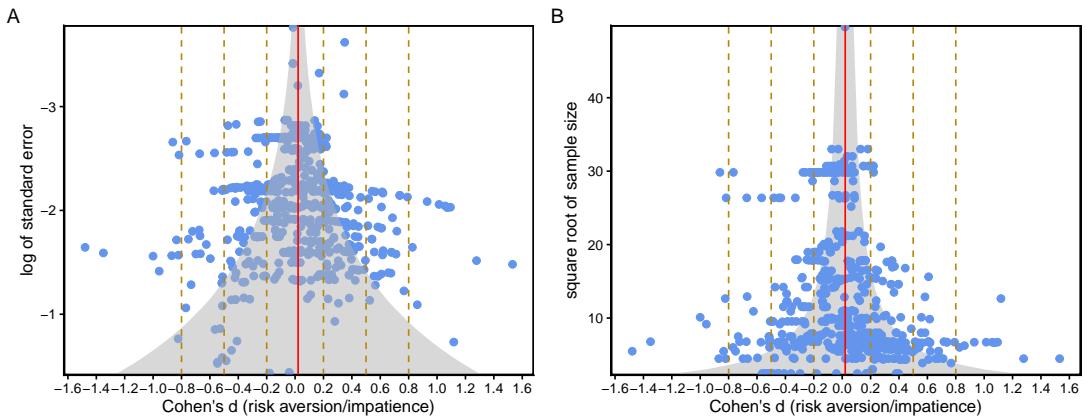


Figure 3: Funnel plot of Cohen's d against its log-standard error

The figure plots the raw effect sizes d_i against $-\ln(se_i)$ (panel A) and against \sqrt{N} (panel B). The gray area in panel A indicates a zone containing non-significant results. The gray area in panel B provides a similar measure, given by $\frac{1.5}{\sqrt{N}}$. The scaling factor of 1.5 is used because it approximates the average *standard deviation* in the sample.

Panel B of Figure 3 plots effect sizes against \sqrt{N} to display the same relationship in terms of sample size. The conclusions remain unchanged: small studies generate nearly all large positive and large negative effects, whereas larger studies (with a

few exceptions) converge toward negligible effects. The correlations between effect size and precision are sizable: $|d_i|$ is negatively correlated with \sqrt{N} ($\rho = -0.365$, $p < 0.001$), with similar patterns for positive effects ($\rho = -0.399$, $p < 0.001$) and negative effects ($\rho = -0.348$, $p < 0.001$). Signed effects also show a negative relationship with precision ($\rho = -0.206$, $p < 0.001$). These findings indicate pronounced small-study effects. Although such effects do not necessarily imply publication bias, publication bias is a common mechanism capable of producing these patterns.

A standard diagnostic for funnel-plot asymmetry is Egger’s regression, which regresses the standardized effect size d_i/se_i on study precision $1/se_i$. Under the null of no small-study effects, the intercept should be zero. Applied to absolute effect sizes, Egger’s test yields a strongly positive intercept ($\beta_0 = 1.314$, 95% CrI [1.018, 1.607]; slope $\beta_1 = 0.060$, 95% CrI [0.028, 0.090]), indicating that small, imprecise studies tend to report disproportionately large deviations from zero. In Egger’s framework, this is the classical pattern consistent with publication bias.

When applied to signed effect sizes, however, the pattern disappears: the intercept is small and uncertain ($\beta_0 = 0.268$, 95% CrI [−0.159, 0.695]), and the slope is near zero ($\beta_1 = -0.019$, 95% CrI [−0.064, 0.026]). This divergence is informative: it implies that small studies tend to report extreme effects, but not systematically in the positive or negative direction. In other words, the small-study pattern we observe is about magnitude, not sign. Such symmetric exaggeration is compatible with publication bias (journals preferentially publishing “large” effects in either direction), but it is also compatible with genuine heterogeneity combined with sampling noise.

Because Egger’s test relies on assumptions that are violated in our setting—normality of true effects, homogeneity across studies, and statistical independence of effect sizes—the contradictory signals between absolute and signed versions cannot be taken as definitive evidence of bias. Instead, they point toward the need

for explicit parametric models of selection, which we turn to next.

4.2 Formal tests and adjustments for publication bias

The effects documented above are indicative of small-study effects, in the sense that smaller and less precise studies are more likely to show significant effects in either direction. We next examine whether the distribution of effects is indicative of publication bias—the tendency of null results to be less likely to be written up by authors or published by journals. We start from a review of some of the most common tests for publication bias.

PET–PEESE. The Precision-Effect Test (PET) and the Precision-Effect Estimate with Standard Error (PEESE) are regression-based tools designed to detect and correct for publication bias by exploiting the empirical relationship between reported effect sizes and their standard errors ([Stanley, 2008](#); [Stanley and Doucouliagos, 2014](#)). In their classical form, both methods are implemented as *fixed-effect* meta-regressions: if publication bias is present, smaller and less precise studies tend to report larger effects, generating a systematic association between estimated effects and their standard errors.

For completeness and comparability with the existing literature, we estimate the standard fixed-effect PET and PEESE regressions. In addition, we implement Bayesian hierarchical versions of both models by embedding the PET–PEESE structure inside our baseline random-effects BHEM. These hierarchical extensions provide several advantages: they allow publication bias to be assessed while simultaneously accounting for (i) genuine between-study heterogeneity in true effects, (ii) statistical dependence among effect sizes reported in the same paper, and (iii) non-normality of the distribution of true effects, since the underlying BHEM uses a Student- t specification. Together, these features make the hierarchical PET–PEESE models considerably more flexible and better suited to our data than their classical fixed-effect counterparts.

In the hierarchical formulation, the mean effect is allowed to depend on study

precision as follows:

$$\widehat{d}_i \sim \text{Student-}t(\nu, \mu + \gamma_x + \lambda se_i, \sigma),$$

where μ is the bias-adjusted mean effect, γ_x is an experiment-level random effect, and λ captures the dependence of effect sizes on study precision (PET). Under publication bias, λ is expected to differ from zero.³

The corresponding PEESE specification replaces the standard error with its square:

$$\widehat{d}_i \sim \text{Student-}t(\nu, \mu + \gamma_x + \lambda se_i^2, \sigma).$$

PEESE typically provides a less biased estimate of μ when a genuine nonzero effect exists, whereas PET is more reliable when the true effect is close to zero.

Across both PET and PEESE, the intercept μ corresponds to the predicted effect size for an infinitely precise study ($se_i \rightarrow 0$) and thus serves as the publication bias-adjusted estimate of the underlying population effect.

Vevea & Hedges selection model Other than PET-PEESE, the [Vevea and Hedges \(1995\)](#) model explicitly models the probability of a study being selected for publication. The approach combines two components: (i) an effect-size model, analogous to our Bayesian Hierarchical Measurement Error Model (BHMEM), that characterizes the distribution of study outcomes in the absence of selective publication, and (ii) a selection model that assigns relative probabilities to studies based on the p -value associated with their effect estimate. This formulation yields effect-size estimates that adjust for selective reporting and allows formal inference

³In the classical PET-PEESE formulation ([Stanley, 2008](#); [Stanley and Doucouliagos, 2014](#)), the PET regression is applied to the standardized effect size d_i/se_i and regresses it on $1/se_i$. This standardization is required under the original *fixed-effect* assumptions, which treat sampling error as the sole source of variation across studies. In our Bayesian hierarchical specification, sampling variance is already modeled explicitly through the likelihood $d_i \sim \mathcal{N}(\widehat{d}_i, se_i^2)$, and between-study heterogeneity is captured by the random-effects distribution. Consequently, the PET-PEESE regression is formulated directly at the level of the latent true effect sizes \widehat{d}_i . This avoids double-counting sampling variance and allows PET-PEESE to operate consistently within a random-effects framework.

on the presence of publication bias.⁴

Let p_i denote the one-tailed p -value of study i , and let $w(p_i)$ denote the probability that a study with p -value p_i is observed. The weight function is typically specified as piecewise constant across K ordered intervals of p -values. Let the endpoints of the j th interval be a_{j-1} and a_j , with $a_0 = 0$ and $a_K = 1$. If p_i falls in the j th interval, the associated selection weight is

$$w(p_i) = \omega_j, \quad \text{if } p_i \in (a_{j-1}, a_j].$$

Because only the relative publication probabilities are identified, the model requires a normalization. Following standard practice, the interval containing the *most statistically significant* results (i.e., $(0, a_1]$) is normalized to

$$\omega_1 = 1.$$

All other weights ω_j are therefore interpreted *relative* to this baseline. For example, $\omega_3 = 0.4$ implies that studies with p -values in interval 3 are published with 40% of the probability of studies in the most significant interval, whereas values $\omega_j > 1$ indicate intervals with a higher publication probability than the baseline.

The selection model can alternatively be expressed in terms of the corresponding test statistic $z_i = d_i/se_i$. Defining $b_j = -\Phi^{-1}(a_j)$, selection weights can be written as

$$w(z_i) = \begin{cases} \omega_1, & \text{if } b_1 < z_i \leq \infty, \\ \omega_j, & \text{if } b_j < z_i \leq b_{j-1}, \\ \omega_K, & \text{if } -\infty < z_i \leq b_{K-1}, \end{cases}$$

where $\Phi^{-1}(\cdot)$ denotes the inverse standard normal cumulative distribution func-

⁴The original Vevea & Hedges model is formulated under a fixed-effect meta-analytic framework. Our implementation includes both the classical fixed-effect version and a Bayesian hierarchical extension embedded within the BHEM, allowing the model to accommodate the substantial between-study heterogeneity present in our dataset.

tion. Given these weights, the likelihood contribution of an effect size d_i is

$$f(d_i | \cdot) = \frac{w(z_i) \phi(d_i | \hat{d}_i, se_i^2)}{\sum_{j=1}^K \omega_j B_{ij}(\hat{z}_i)},$$

where $\phi(\cdot)$ is the normal density, \hat{d}_i is the latent true effect under the effect-size model, $\hat{z}_i = \hat{d}_i/se_i$, and $B_{ij}(\hat{z}_i)$ is the probability that a normal random variable with mean \hat{z}_i and unit variance falls in the j th selection interval:

$$B_{ij} = \begin{cases} 1 - \Phi(b_1 - \hat{z}_i), & j = 1, \\ \Phi(b_{j-1} - \hat{z}_i) - \Phi(b_j - \hat{z}_i), & 1 < j < K, \\ \Phi(b_{K-1} - \hat{z}_i), & j = K. \end{cases}$$

We estimate both *unidirectional* (V&H-UD) and *bidirectional* (V&H-BD) versions of the model. In the unidirectional specification, p -values are based on $|z_i|$, imposing symmetric selection weights for positive and negative effects. The bidirectional specification computes p -values from the signed statistic, allowing asymmetric selection depending on the effect's direction.

Following common practice, we partition the p -value distribution using thresholds at 0.025, 0.05, and 0.10, corresponding to conventional significance levels in empirical research. These intervals determine the selection weights ω_j , which quantify how much more (or less) likely studies in each significance band are to appear in the published sample.

Andrews & Kasy selection model. The [Andrews and Kasy \(2019\)](#) approach provides a general framework for identifying and correcting publication bias by explicitly modelling both the distribution of true effects and the selection mechanism governing which results are observed in the published sample.⁵ Unlike the

⁵The original Andrews & Kasy framework is derived under assumptions that parallel a fixed-effect meta-analysis, with heterogeneity incorporated through a nonparametric distribution of true effects rather than an explicit random-effects structure. In our implementation, we estimate both the classical version and a Bayesian hierarchical extension embedded in the BHEM to account for between-study heterogeneity.

Vevea & Hedges model, which specifies relative selection weights across discrete p -value intervals, the A&K model directly parameterizes the *absolute* probability that a study with a given test statistic is published.

Let $z_i = d_i/se_i$ denote the test statistic for study i . The central object in the Andrews–Kasy framework is a selection function $p(z_i)$ describing the probability that a study with test statistic z_i is published (or written up). The observed distribution of effect sizes is therefore a reweighted version of the latent (unpublished) distribution:

$$f(d_i | \cdot) \propto p(z_i) \phi\left(d_i | \hat{d}_i, se_i^2\right),$$

where $\phi(\cdot)$ denotes the normal density and \hat{d}_i is the latent true effect implied by the effect-size model. Because $p(z_i)$ is modelled on the logit scale, the estimated publication probabilities are constrained to lie in the unit interval $(0, 1)$. Unlike the Vevea–Hedges framework, which identifies only *relative* odds of publication across p -value intervals, the Andrews–Kasy model targets absolute publication probabilities.

Identification of the selection function relies on the fact that studies in a meta-analysis typically differ in their sampling variances se_i^2 . This variation means that two studies with similar underlying effects can nonetheless produce different test statistics $z_i = d_i/se_i$, purely because their standard errors differ. The resulting heteroskedasticity in z_i provides the key source of identifying variation that allows the publication probabilities $p(z_i)$ to be recovered; see [Andrews and Kasy \(2019\)](#) for details.

To model the selection function flexibly, [Andrews and Kasy \(2019\)](#) propose parametric and semiparametric basis expansions. We consider two widely used specifications:

- **Quadratic interpolation (A&K–QI).** A parsimonious specification in which

$$p(z_i) = \text{logit}^{-1}(\omega_0 + \omega_1 z_i + \omega_2 z_i^2),$$

allowing smooth nonlinear variation in publication probability across the range of z -values.

- **Natural spline interpolation (A&K–NS).** A more flexible specification in which

$$p(z_i) = \text{logit}^{-1}(\boldsymbol{\omega}^\top \mathbf{b}(z_i)),$$

where $\mathbf{b}(z)$ is a natural spline basis with knots placed at the conventional significance thresholds $(-1.960, -1.282, 0, 1.282, 1.960)$. This formulation permits highly flexible, data-driven modelling of selection patterns without imposing strong shape restrictions.⁶

Taken together, these two specifications span a wide range of plausible selection mechanisms, from smooth global patterns (QI) to flexible local nonlinearities (NS). In our implementation, both selection models are embedded within the Bayesian hierarchical measurement-error framework described above, allowing publication bias to be assessed while simultaneously accounting for between-paper heterogeneity, statistical dependence, and measurement error in a unified structure.

Selection patterns implied by the individual publication-bias models. Each of the approaches discussed above captures a different aspect of publication selection. PET–PEESE detects *small-study effects* through the association between effect sizes and their standard errors; the Vevea & Hedges model identifies *discrete jumps* in publication probability across p -value intervals; and the Andrews & Kasy model estimates a smooth *selection function* describing the absolute probability that a study with a given test statistic enters the published literature.

Figure 4 shows that the Vevea–Hedges and Andrews–Kasy models recover markedly different selection mechanisms. The V&H model, which imposes stepwise changes at conventional p -value thresholds, produces the expected pattern: a sharp increase in publication probability for statistically significant results. In the case

⁶Using a natural cubic spline basis with five degrees of freedom produces nearly identical conclusions; we adopt the significance-knot specification because of its interpretability.

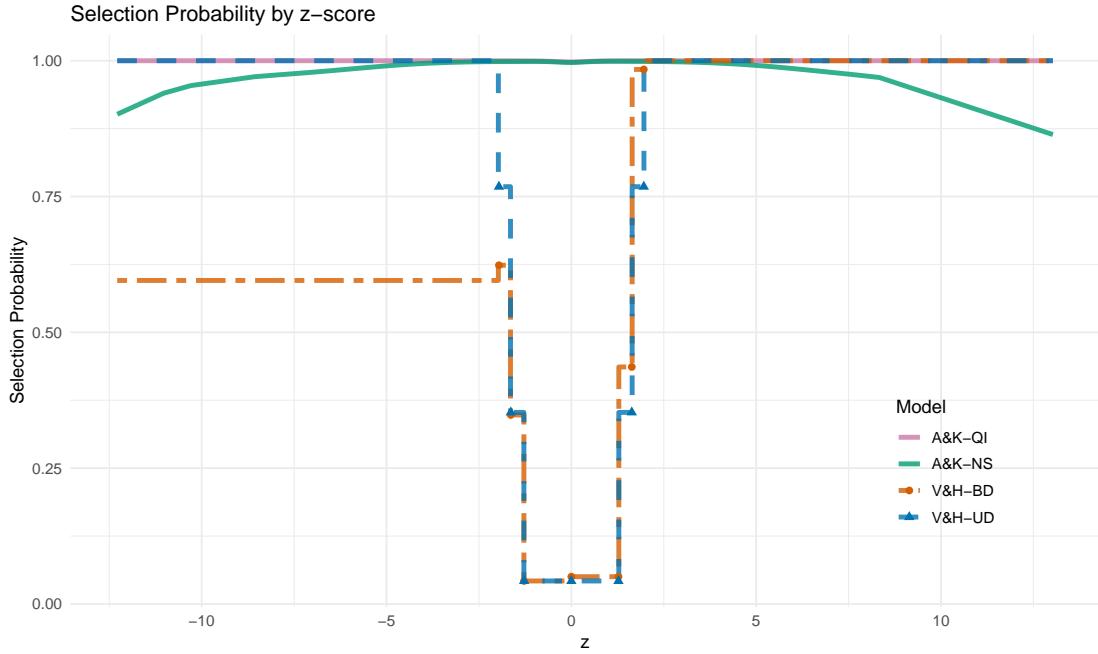


Figure 4: Posterior mean selection probabilities for the Vevea & Hedges and Andrews & Kasy models under random-effects specifications.

of the bidirectional specification, the increase in selection probability is less pronounced for significantly *negative* results—which are nonetheless much more likely than nonsignificant effects to be published.

In contrast, the A&K model places no structural restrictions on how selection varies with the test statistic. In our dataset, the estimated selection functions are relatively flat and do not exhibit a strong increase around the 5% significance threshold; in some regions the publication probability even declines for extremely large z -values (possibly due to few effect sizes in those regions). This divergence from the V&H pattern reflects the much greater flexibility of the A&K specification, as well as the substantial heterogeneity of our sample: many studies with non-significant or modest effects appear to have been published, while extreme effects may not receive disproportionately more weight in the published literature. Rather than contradicting V&H, the A&K model therefore captures a different, smoother dimension of selection that need not align with stepwise threshold effects.

The PET–PEESE diagnostics paint a more nuanced picture. The fixed-effect

PET model yields a positive and statistically significant slope ($\lambda_{\text{PET,FE}} = 0.28$, $p < 0.001$), suggesting that smaller and noisier studies tend to report larger effects. However, once between-study heterogeneity is accounted for, the slope becomes statistically indistinguishable from zero ($\lambda_{\text{PET,RE}} = -0.25$, $p = 0.138$).

A similar pattern emerges for the PEESE specification: the fixed-effect model detects a significant positive slope ($\lambda_{\text{PEESE,FE}} = 0.78$, $p < 0.01$), whereas the random-effects model does not ($\lambda_{\text{PEESE,RE}} = -0.56$, $p = 0.139$). These differences imply that the apparent small-study effects in the raw data are closely tied to genuine heterogeneity across studies rather than to selective publication alone.

Importantly, the bias-adjusted intercepts (interpreted as the effect size for an infinitely precise study) remain close to zero under the random-effects specifications ($\mu_{\text{PET,RE}} = 0.078$, $\mu_{\text{PEESE,RE}} = 0.057$; see table 1 for statistical information), both lying well within the range of negligible effects. Thus, while PET–PEESE detects small-study patterns under a fixed-effect formulation, the Bayesian hierarchical versions of these models do not provide strong evidence of systematic publication bias once study-level heterogeneity is incorporated.⁷

4.3 Results from Robust Bayesian Model Averaging

To synthesise the evidence across all publication-bias models, we implement a Prediction–Optimised Bayesian Model Averaging (PoBMA) framework. PoBMA evaluates a broad family of meta-analytic specifications—including the baseline measurement-error model (BHMEM), PET–PEESE, Vevea & Hedges selection models, and the continuous-selection models of Andrews & Kasy—and combines them into a single posterior distribution of the underlying effect. We base the PoBMA on stacking weights derived from leave-one-out cross-validation (LOO;

⁷A potential concern could be that, in the hierarchical PET–PEESE models, the heavy-tailed random-effects distribution might absorb patterns that would otherwise be attributed to publication bias, thereby driving the PET–PEESE slope toward zero. This is not the case: the PET–PEESE slope is identified from the *within-study* relationship between \hat{d}_i and se_i , whereas the Student– t random-effects distribution captures *between-study* heterogeneity in latent true effects. These components are orthogonal in the likelihood, so heterogeneity cannot generate or eliminate a dependence of effect sizes on their standard errors.

[Vehtari et al., 2017](#); [Yao et al., 2018](#)). This approach prioritises *predictive* performance, is robust to the heavy-tailed hierarchical structure of our models, and avoids the well-known sensitivity of Bayes factors to prior specification.⁸

Model	Δelpd	weight	μ
Random MEM	0.0 (0.0)	0.400	0.043 (-0.004, 0.091)
Random PEESE	-0.1 (3.8)	0.279	0.057 (0.004, 0.113)
Random A&K-NS	-1.9 (3.5)	0.087	0.043 (-0.004, 0.091)
Random PET	-2.6 (3.9)	0.151	0.078 (-0.002, 0.158)
Random A&K-QI	-2.9 (3.1)	0	0.042 (-0.006, 0.089)
Random V&H-BD	-13.3 (5.0)	0	0.027 (-0.025, 0.079)
Random V&H-UD	-66.9 (10.3)	0.084	0.031 (-0.007, 0.068)
Fixed V&H-UD	-1286.1 (176.2)	0	0.000 (0.000, 0.000)
Fixed PEESE	-1291.2 (178.5)	0	-0.003 (-0.013, 0.007)
Fixed A&K-NS	-1291.4 (177.2)	0	0.006 (-0.003, 0.014)
Fixed A&K-QI	-1291.4 (177.2)	0	0.006 (-0.003, 0.014)
Fixed MEM	-1291.6 (177.3)	0	0.006 (-0.003, 0.014)
Fixed PET	-1292.0 (181.7)	0	-0.020 (-0.037,-0.003)
Fixed V&H-BD	-1300.3 (179.1)	0	-0.009 (-0.019, 0.001)

Table 1: Leave-one-out cross-validation (LOO) results and stacking weights for the 14 model specifications included in the Prediction-optimized Model Averaging (PoBMA) framework. The ‘Model’ column lists each specification, indicating fixed- or random-effects assumptions and the type of publication bias correction applied: hierarchical Bayesin measurement error model (MEM), Precision-Effect Test (PET), Precision-Effect Estimate with Standard Error (PEESE), Vevea & Hedges selection models under unidirectional (V&H-UD) or bidirectional (V&H-BD) specifications, and Andrews & Kasy selection models using natural spline (A&K-NS) or quadratic interpolation (A&K-QI). Δelpd denotes the difference in expected log predictive density relative to the best-fitting model (standard error in parentheses), ‘weight’ indicates the model stacking weight, and μ gives the posterior mean of the bias-corrected effect size (with 95% credible intervals in parentheses).

Each model is estimated under both fixed-effect and random-effects specifications, yielding a total of 14 candidates. This framework allows the data to determine (i)

⁸[Maier et al. \(2022\)](#) propose a Bayes-factor-based approach to model averaging, implemented in the `RoBMA` software. Our methodology differs fundamentally from theirs: all publication-bias models are embedded within a hierarchical measurement-error framework, and model weights are obtained via LOO-based stacking rather than Bayes factors, which are typically unstable in hierarchical settings and highly sensitive to prior specification.

which publication-bias corrections receive empirical support, and (ii) the resulting bias-adjusted mean effect size μ . Table 1 reports the LOO differences, stacking weights, and posterior means for μ for all models. Several patterns emerge clearly.

First, the largest stacking weight is assigned to our Bayesian hierarchical measurement-error model (BHEM; weight = 0.400). Subsequent models—although designed to correct for different forms of publication bias—do not materially improve predictive performance. The next most influential models are the random-effects PEESE specification (weight = 0.279), the random-effects PET specification (weight = 0.151), and the Andrews & Kasy continuous-selection models, all of which receive modest but non-negligible weights.⁹ Whereas these models neither improve upon nor perform substantially worse than the BHEM, the Vevea & Hedges stepwise-selection models display markedly poorer predictive fit (with the unidirectional specification nonetheless contributing a small positive weight). By contrast, all fixed-effect specifications receive effectively zero weight, reflecting the substantial between-study heterogeneity in our data and the incompatibility of fixed-effect assumptions with the empirical structure of incentive-effect estimates.

Second, across all random-effects models, the bias-adjusted population mean remains small. Posterior means range from approximately 0.027 (V&H-BD) to 0.078 (PET), and all associated 95% credible intervals lie entirely within the “negligible” range of $[-0.2, 0.2]$. No model yields credible evidence for a substantively meaningful effect of real versus hypothetical incentives. We compute the overall model-averaged estimate of the underlying effect size by combining the individual models using their stacking weights. The resulting posterior mean is

$$\mu_{\text{PoBMA}} = 0.051 \quad (95\% \text{ CrI } [0.024, 0.079]),$$

which again falls squarely within the negligible region. PoBMA therefore confirms

⁹Stacking weights need not mirror the ordering of models by Δelpd . Their purpose is to maximise the predictive performance of the *combined* model, meaning that a specification with weaker standalone predictive accuracy may nevertheless receive a positive weight if it contributes complementary predictive variation.

that, after accounting for publication bias and heterogeneity using a wide range of correction methods, the meta-analytic effect of real incentives on choice behaviour remains very small.

Taken together, the PoBMA results reinforce the main conclusion from the individual publication-bias models: although the raw data exhibit small-study patterns, once we account for heterogeneity and alternative mechanisms of selective reporting, the underlying effect of incentive provision on decision behaviour is very small and likely negligible.

5 Variability in true effect sizes

We next examine whether the residual variability in true effect sizes—after accounting for sampling error and shrinkage—is systematically related to characteristics of the underlying studies.

5.1 Meta-regression

To assess whether observable study characteristics predict systematic variation in true effect sizes, we extend the Bayesian hierarchical measurement-error model by replacing the population mean μ in Eq. (2) with a meta-regression term. Let X denote an $N \times K$ matrix of study-level predictors and let $\boldsymbol{\alpha}$ be the corresponding K -dimensional vector of regression coefficients. The model becomes:

$$\hat{d}_i \sim \text{Student-}t(\nu, X_i \boldsymbol{\alpha} + \gamma_x, \sigma),$$

where X_i is the row of predictors for study i , γ_x is the experiment-level random effect, and σ captures the between-study standard deviation of the true effects after accounting for the covariates. The goal of this meta-regression is to explain true heterogeneity in \hat{d}_i after adjusting for the influence of sampling error.

Before turning to the substantive moderators, it is important to clarify the choice

of model used to analyse heterogeneity. Although the PoBMA framework provides our preferred estimate of the *overall* effect size by averaging across publication-bias corrections and model structures, it is not suited for meta-regression. The publication-bias models included in PoBMA impose substantially different likelihoods and regression structures (e.g. PET and PEESE introduce precision terms, Vevea–Hedges applies *p*-value-based weighting, and—to complicate things further—fixed-effect variants do not allow for heterogeneity at all), making moderator effects non-comparable across models.

By contrast, the Bayesian hierarchical measurement-error model (BHEM) provides a unified and coherent platform for studying systematic variation in the latent true effect sizes \hat{d}_i . It explicitly separates sampling error from between-study variability, accommodates experiment-level clustering, and allows covariates to be incorporated in a consistent manner. Importantly, the BHEM is also the *best-performing* model in the LOO comparison (Table 1), receiving the highest stacking weight. This indicates that, among all candidate models, it offers the strongest predictive performance for the data at hand.

For these reasons, all inferences about heterogeneity across study characteristics are based on the BHEM rather than on the model-averaged PoBMA estimates. All regression results reported below come from a single meta-regression that includes the following predictors: a dummy for decisions in the time domain (relative to risk tasks); a within-subjects dummy (relative to a between-subjects design); dummies for loss and mixed outcome domains (relative to gains); a dummy indicating whether the effect is based on a parametric estimate rather than a non-parametric measure; dummies for field and online experiments (relative to laboratory studies); the probability with which a participant is selected for payment in between-subject randomization schemes (binarized to paying all subjects versus paying only some); and a dummy indicating whether all decisions in a study are incentivized. We also control for whether a study is published and whether it appears in an economics journal. The full regression tables, as well as several robustness analyses including additional controls (such as geographical location and

measurement method) and continuous version of binarized variables are reported in Online Appendix F.

5.2 Domain differences: risk, time, mixed, and losses

We begin by examining differences across decision domains—most prominently, between risk and time.¹⁰ Panel A of Figure 6 plots kernel density estimates of the raw effect sizes for risk and time tasks. At a descriptive level, the two distributions are remarkably similar: both are centered close to zero and show a broadly symmetric shape around that point. There is no visually apparent shift suggesting that incentive effects systematically differ between the two domains.

While the nonparametric distributions provide no indication of domain-level differences, visual comparisons alone cannot account for sampling error, between-paper heterogeneity, or correlations with other study characteristics. We therefore turn to the meta-regression analysis, which formally tests whether the underlying, bias-adjusted effect sizes differ between risk and time preferences once these factors are taken into account. Panel C plots the posterior difference in true effects between time and risk domains, together with its 95% credible interval. The interval spans zero comfortably, indicating that—after adjusting for noise and study-level covariates—there is no meaningful difference in incentive effects between risk and intertemporal choice tasks.

Panel B shows the distribution of raw effect sizes separately for gains, losses, and mixed-outcome choices. Effects for gains are perfectly centered on zero, indicating no detectable incentive effect in this domain. In contrast, losses appear slightly shifted toward greater risk aversion, whereas mixed gain–loss choices exhibit a much broader distribution that does not reveal an immediate directional pattern. To clarify these patterns, Panel C reports the corresponding meta-regression estimates. Although the coefficient for losses is indeed in the direction of increased risk aversion, the credible interval includes zero, indicating that the effect is not

¹⁰The dataset includes a single effect size from an ambiguity task (i.e. choices under unknown probabilities). We classify this as part of the “risk” domain for present purposes.

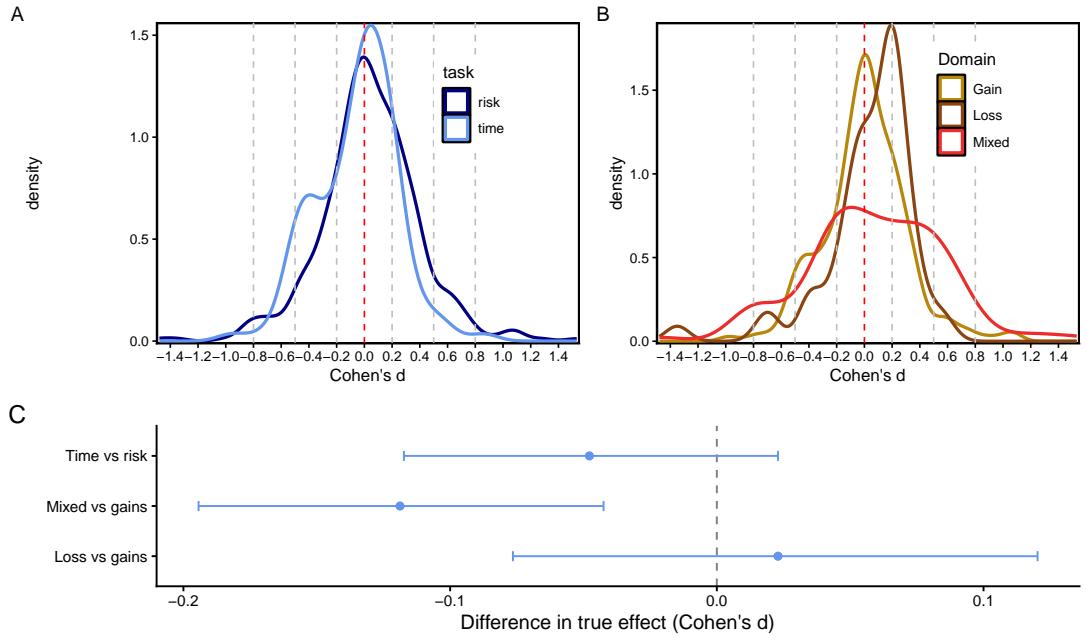


Figure 5: Cohen's d by decision domain

statistically meaningful. For mixed gain–loss choices, however, the estimated effect is significantly negative: incentives push choices in the direction of greater *risk seeking* (i.e., reduced risk aversion).

These results raise important interpretational considerations. Together with the null effect for gains, the findings suggest that the observed domain differences may reflect features of the *incentivization mechanism itself*, rather than intrinsic differences in preferences under real versus hypothetical payment. Nearly all incentivized studies in our dataset implement losses by deducting them from an initial endowment. This creates the possibility of *house-money*–type integration, whereby subjects mentally combine the experimental endowment with the subsequent losses (Thaler and Johnson, 1990). The qualitative pattern we observe is exactly what such integration predicts. For pure losses, integrating with a positive endowment dilutes or eliminates loss framing, reducing risk-seeking tendencies—as reflected in the shift toward greater risk aversion. For mixed gambles, integration can diminish the effective loss component; for loss-averse individuals, this should *increase* risk taking, precisely the direction found in our data. Direct evidence for

such mechanisms has been documented experimentally by [Jelschen and Schmidt \(2023\)](#), who show how unconditional endowments can be mentally assimilated and thereby alter risk-taking behavior.

It is important to emphasize how these findings differ from those in prior meta-analyses examining loss aversion. [Brown et al. \(2024\)](#) report no systematic difference between incentivized and hypothetical conditions. The key distinction is methodological: these earlier studies rely on *between-study* comparisons, where incentive conditions are not randomized and can be confounded with other design features (e.g., stake size, elicitation method, sample composition) that often covary with payment schemes. In contrast, the effects estimated in our meta-analysis are based on *within-study* random variation in incentives. They therefore admit a causal interpretation: the differences we observe reflect the consequences of incentivization itself, rather than uncontrolled differences across studies.

5.3 Design differences: treatment and incentives

Panel A of Figure 6 separates effect sizes according to whether the experiment used a between- or within-subjects manipulation. This distinction is theoretically important: within-subjects designs are more susceptible to contrast effects (a given change appears more pronounced when experienced side-by-side) and to experimenter-demand effects (subjects may infer what the experimenter “wants” from observing treatment variation). See, for example, [Greenwald \(1975\)](#) for an early and influential discussion.

This matters for interpreting the broader literature. The canonical evidence often cited as proof that incentives “matter” in individual decision tasks—notably [Holt and Laury \(2002\)](#)—relies on a within-subjects manipulation of payoff salience. As several commentators have pointed out, such designs confound incentive effects with contrast- and demand-induced shifts in choice patterns (e.g. [Read, 2005](#)). Our data reveal precisely this pattern: within-subject manipulations tend to yield noticeably larger effect sizes than between-subject designs. The top bar in Panel C confirms that this difference is statistically significant in our meta-regression.

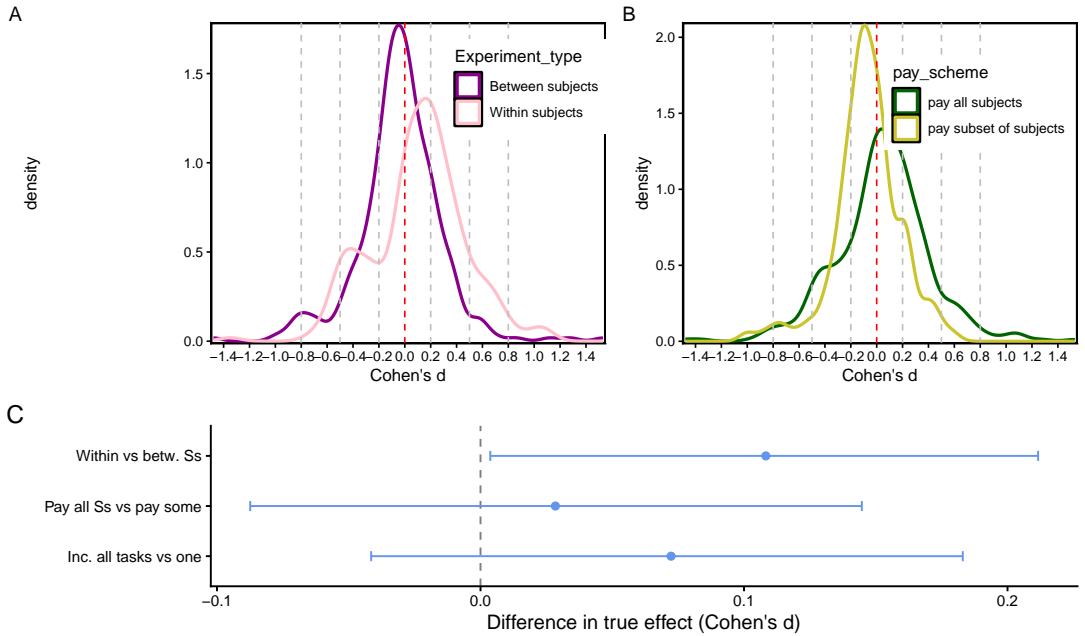


Figure 6: Cohen’s d by treatment design

Panel B displays density estimates conditioned on whether *all* subjects were paid versus whether only a subset were paid. In most experiments employing partial payment, the selection probability is ≤ 0.2 ; in such cases a dummy indicator is more appropriate than a continuous measure. Our qualitative conclusions remain unchanged, however, when we use the continuous probability as a covariate in the meta-regression. Paying all subjects produces a distribution that is tightly centered and symmetric around 0. When only a subset of subjects is paid, the distribution appears slightly shifted to the left. This pattern is not supported by the meta-regression estimates in Panel C, which indicate no statistically meaningful effect of the payment probability on incentive effects.

Panel C further includes a dummy for whether *all decisions* made by a subject were incentivized.¹¹ Here, too, the meta-regression detects no systematic impact on effect sizes. In summary, although within-subject designs tend to amplify incentive effects, the specific payment scheme—paying all subjects, paying a subset, or paying all decisions—does not appear to meaningfully influence the magnitude of

¹¹This design feature is not simply a subset of the “pay-all-subjects” category: some studies pay all decisions even when only a subset of subjects is paid.

incentive effects. Taken together, these findings indicate that, however subjects are paid, incentive schemes have no detectable effect on individual choice behaviour—at least for the types of tasks represented in our dataset.

5.4 Other measures of heterogeneity

The other controls, we included—parametric versus nonparametric estimates, field or online experiments versus lab experiments, and publication status—yield no significant effect. The full regressions—as well as robustness regressions with additional controls, and different quantification of the incentive variables—can be found in Online Appendix [F](#).

Taken together, these results show that although some study characteristics—most notably within-subjects designs and mixed gain–loss tasks—exhibit statistically detectable shifts in estimated incentive effects, these differences are substantively small. More importantly, meta-regression explains essentially none of the between-study heterogeneity in true effect sizes. Consequently, the residual heterogeneity appears to reflect idiosyncratic study-level variation rather than systematic differences in design, domain, or incentive implementation. In sum, once sampling error and selective reporting are accounted for, incentive provision produces no consistent or meaningful change in individual choice behaviour across the diverse experimental tasks included in our dataset.

6 Conclusion

This study offers a systematic, causally identified evaluation of whether real monetary incentives materially change behaviour in canonical individual decision-making tasks. Pooling 584 effect sizes from studies that randomly vary incentive provision, and analyzing them with an outlier-robust Bayesian hierarchical framework, we show that the average effect of real incentives on decisions under risk and over time is negligible. This conclusion holds across all estimation strategies,

including models that adjust for small-study patterns and publication bias. While incentive effects do vary across studies, the magnitude of this heterogeneity is limited and explained only weakly by observable design features.

Interpretation of our results. A natural question concerns why we observe virtually no incentive effects in the data. One traditional view holds that individuals possess direct access to their preferences, and that reporting these preferences requires little cognitive effort. If so, there is little reason to expect hypothetical choices to diverge systematically from incentivized ones: instructing subjects to “answer as if the choices were for real” may already suffice for stable preference revelation (e.g. [Tversky and Kahneman, 1992](#)). Several economic studies similarly find that incentive provision often fails to eliminate well-known “biases” ([Grether and Plott, 1979](#); [Enke et al., 2023](#)).

Moreover, real incentives can sometimes introduce complications rather than resolve them. Complex payment schemes, loss implementation rules, or unfamiliar randomization procedures may impose additional cognitive load, increase task misunderstanding, or generate experimenter-demand concerns (e.g. [Camerer and Hogarth, 1999](#); [Hertwig and Ortmann, 2001](#)). In such cases, incentives may *add noise* rather than improve preference elicitation. This possibility is consistent with our finding that the only clear departures from the overall null effect occur in mixed gain–loss decisions—domains where incentives are typically implemented via loss-from-endowment mechanisms known to generate house-money effects and other framing distortions. Thus, these deviations likely reflect artefacts of implementation rather than genuine incentive responsiveness.

Noisy cognition. A very different interpretation comes from recent research arguing that many patterns of choice under risk and over time may arise not from stable preferences, but from systematic *cognitive frictions*. In these models, behaviour is shaped by noisy number perception, imprecise mental representations, or probabilistic computation rather than by the optimization of a well-defined utility function ([Khaw, Li and Woodford, 2021](#); [Oprea, 2024](#)). Related

experimental evidence demonstrates that seemingly innocuous manipulations of numerical format—such as displaying outcomes in different numerical units—can produce systematic changes in observed behaviour (e.g. [Garagnani and Vieider, 2025](#); [Oprea and Vieider, 2025](#)).

Within this noisy-cognition framework, we would expect incentives to influence choices only to the extent that they increase attention and thereby reduce processing noise. This prediction stands in sharp contrast to the “easy-access-to-preferences” account discussed above, under which hypothetical and incentivized choices should be similar precisely because preferences are readily retrieved. Our findings speak directly to this *incentive-based attention* mechanism: we see no systematic shift in mean decisions when incentives are introduced. Thus, while our results are entirely consistent with the idea that cognitive frictions shape behaviour, they suggest that standard monetary incentives do not, on their own, attenuate those frictions in the kinds of tasks studied here.

Taken together, the evidence presented here offers a clear conclusion: real monetary incentives do not materially alter behaviour in the canonical choice tasks used to study risk and time preferences. We caution against overgeneralizing this conclusion: incentives undoubtedly matter in domains involving real effort, strategic interaction, or costly actions outside the laboratory—contexts not examined here. But for the study of individual decision making under risk and over time, our results call for a reassessment of standard experimental practices and a reconsideration of when incentive provision is truly necessary.

References

Andrews, Isaiah, and Maximilian Kasy (2019) ‘Identification of and correction for publication bias.’ *American Economic Review* 109(8), 2766–2794

Brañas-Garza, Pablo, Diego Jorrat, Antonio M Espín, and Angel Sánchez (2023) ‘Paid and hypothetical time preferences are the same: Lab, field and online evidence.’ *Experimental Economics* 26(2), 412–434

Brañas-Garza, Pablo, Lorenzo Estepa-Mohedano, Diego Jorrat, Victor Orozco, and Ericka Rascón-Ramírez (2021) ‘To pay or not to pay: Measuring risk preferences in lab and field.’ *Judgment and Decision Making* 16(5), 1290–1313

Brown, Alexander L., Taisuke Imai, Ferdinand M. Vieider, and Colin F. Camerer (2024) ‘Meta-analysis of empirical estimates of loss aversion.’ *Journal of Economic Literature* 62(3), 485–616

Camerer, Colin F, and Robin M Hogarth (1999) ‘The effects of financial incentives in experiments: A review and capital-labor-production framework.’ *Journal of Risk and Uncertainty* 19, 7–42

Carpenter, Bob, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell (2017) ‘Stan: A probabilistic programming language.’ *Journal of Statistical Software* 76(1), 1–32

Carson, Richard T, and Theodore Groves (2007) ‘Incentive and informational properties of preference questions.’ *Environmental and resource economics* 37, 181–210

Cheung, Stephen L., Agnieszka Tymula, and Xuetong Wang (2023) ‘Quasi-hyperbolic present bias: A meta-analysis.’ *SSRN Electronic Journal*

Cohen, Jacob (1988) *Statistical Power Analysis for the Behavioral Sciences*, 2nd ed. (Hillsdale, NJ: Lawrence Erlbaum Associates)

Egger, Matthias, George Davey Smith, Martin Schneider, and Christoph Minder (1997) ‘Bias in meta-analysis detected by a simple, graphical test.’ *bmj* 315(7109), 629–634

Enke, Benjamin, Uri Gneezy, Brian Hall, David Martin, Vadim Nelidov, Theo

Offerman, and Jeroen Van De Ven (2023) ‘Cognitive biases: Mistakes or missing stakes?’ *Review of Economics and Statistics* 105(4), 818–832

Garagnani, Michele, and Ferdinand M. Vieider (2025) ‘Economic consequences of numerical adaptation.’ *Psychological Science* 36(6), 407–420

Gelman, Andrew, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin (2014) *Bayesian data analysis*, vol. 3 (CRC press Boca Raton, FL)

Gneezy, Uri, Yoram Halevy, Brian Hall, Theo Offerman, and Jeroen van de Ven (2024) ‘How real is hypothetical? a high-stakes test of the allais paradox.’ Technical Report

Greenwald, Anthony G. (1975) ‘Consequences of prejudice against the null hypothesis.’ *Psychological Bulletin* 82(1), 1–20

Grether, David M, and Charles R Plott (1979) ‘Economic theory of choice and the preference reversal phenomenon.’ *The American Economic Review* 69(4), 623–638

Hertwig, Ralph, and Andreas Ortmann (2001) ‘Experimental practices in economics: A methodological challenge for psychologists?’ *Behavioral and brain sciences* 24(3), 383–403

Holt, Charles A., and Susan K. Laury (2002) ‘Risk Aversion and Incentive Effects.’ *American Economic Review* 92(5), 1644–1655

Imai, Taisuke, Tom A Rutter, and Colin F Camerer (2021) ‘Meta-analysis of present-bias estimation using convex time budgets.’ *The Economic Journal* 131(636), 1788–1814

Jelschen, Hauke, and Ulrich Schmidt (2023) ‘Windfall gains and house money: The effects of endowment history and prior outcomes on risky decision-making.’ *Journal of Risk and Uncertainty* 66(3), 215–232

Khaw, Mel Win, Ziang Li, and Michael Woodford (2021) ‘Cognitive imprecision and small-stakes risk aversion.’ *The Review of Economic Studies* 88(4), 1979–2013

Maier, Maximilian, Dora Matzke, Jeffrey N. Rouder, Eric-Jan Wagenmakers, and

Alexander Ly (2022) ‘Robust bayesian meta-analysis: Addressing publication bias with model averaging.’ *Psychological Methods* 27(5), 790–808

Matousek, Jindrich, Tomas Havranek, and Zuzana Irsova (2022) ‘Individual discount rates: a meta-analysis of experimental evidence.’ *Experimental Economics* 25(1), 318–358

Oprea, Ryan (2024) ‘Decisions under risk are decisions under complexity.’ *American Economic Review* 112, 3789–3811

Oprea, Ryan, and Ferdinand M. Vieider (2025) ‘The new psychophysics of risk and time.’ *Working Paper*

Plott, Charles R (1986) ‘Rational choice in experimental markets.’ *Journal of Business* pp. S301–S327

Read, Daniel (2005) ‘Monetary incentives, what are they good for?’ *Journal of Economic Methodology* 12(June), 265–276

Smith, Vernon L (1982) ‘Microeconomic systems as an experimental science.’ *The American economic review* 72(5), 923–955

Stanley, Tom D (2008) ‘Meta-regression methods for detecting and estimating empirical effects in the presence of publication selection.’ *Oxford Bulletin of Economics and statistics* 70(1), 103–127

Stanley, Tom D, and Hristos Doucouliagos (2014) ‘Meta-regression approximations to reduce publication selection bias.’ *Research Synthesis Methods* 5(1), 60–78

Thaler, Richard H, and Eric J Johnson (1990) ‘Gambling with the house money and trying to break even: The effects of prior outcomes on risky choice.’ *Management science* 36(6), 643–660

Tversky, Amos, and Daniel Kahneman (1992) ‘Advances in Prospect Theory: Cumulative Representation of Uncertainty.’ *Journal of Risk and Uncertainty* 5, 297–323

Vehtari, Aki, Andrew Gelman, and Jonah Gabry (2017) ‘Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC.’ *Statistics and Computing* 27(5), 1413–1432

Vevea, Jack L, and Larry V Hedges (1995) ‘A general linear model for estimating

effect size in the presence of publication bias.' *Psychometrika* 60(3), 419–435

Vieider, Ferdinand M. (2024) 'Bayesian estimation of decision models.' Technical Report, RISL $\alpha\beta$

Yao, Yuling, Aki Vehtari, Daniel Simpson, and Andrew Gelman (2018) 'Using stacking to average Bayesian predictive distributions.' *Bayesian Analysis* 13(3), 917–1007

ONLINE APPENDIX

A Search Strategy and Additional Details

A.1 Full Search Terms

The primary search was conducted in April 2024 using Web of Science (All Databases), across research areas including Psychology, Behavioral Sciences, and Business Economics. The following Boolean search string was used:

```
((hypothetical OR fictive) AND (real OR actual) AND (incentive  
OR reward OR payoff))
```

This search yielded 526 records. An additional 103 papers were identified through backward citation searches, and 106 papers through Peter Wakker's annotated bibliography (search term: "real incentives/hypothetical choice"). We then shared the preliminary list of papers we had screened for inclusion on the most commonly used mailing lists (ESA and JDM Society) to solicit additional articles and unpublished results we might have missed, which yielded a further 29 papers.

A.2 Inclusion and Exclusion Details

Studies were included if:

1. They compared behavior under hypothetical and real incentives.
2. The incentive manipulation occurred within tasks involving risk or intertemporal choice.
3. The ranges of magnitudes, probabilities, or delays were held constant or directly comparable across incentive conditions.

Studies were excluded if real and hypothetical conditions differed in:

- reward magnitudes,
- probability ranges,
- time delays,
- commodity type,
- participant recruitment.

These exclusions helped prevent confounding influences, such as magnitude, delay, commodity, or demographic effects. In total, 75 studies were excluded on these grounds.

B Outcome Coding Details

B.1 Temporal Discounting

We coded the following outcomes:

- Proportion of choices for smaller-sooner versus larger-later rewards.
- Indifference points and Area Under the Curve (AUC) measures.
- Estimated discounting parameters (exponential, hyperbolic, quasi-hyperbolic).

B.2 Risk Taking

We coded:

- Proportion of risky versus safe choices.
- Certainty equivalents and/or AUC of the utility function.
- Prospect Theory parameter estimates:
 - utility curvature,
 - probability weighting,
 - loss aversion.
- Balloon Analogue Risk Task (BART) measures.

C Effect Size Computation: Full Formulas

For each study, we computed Cohen's d using the information reported (test statistics, summary moments, or regression output). Throughout, N_1 and N_2 denote the sample sizes in the real and hypothetical conditions, respectively. For within-subject designs, N denotes the number of paired observations (participants providing both responses), and ρ denotes the within-subject correlation when available. We report two variants of the effect size: d_0 (assuming $\rho = 0$ when correlation is unavailable) and, where applicable, $d_{0.5}$ (an alternative assuming $\rho = 0.5$).

C.1 Between-subject designs

Directly reported d : If Cohen's d was reported, we used it directly:

$$d_0 = d_{0.5} = d.$$

t statistic: For an independent-samples t test:

$$d_0 = d_{0.5} = |t| \sqrt{\frac{1}{N_1} + \frac{1}{N_2}}.$$

F statistic: For a two-group comparison reported as an ANOVA F statistic:

$$d_0 = d_{0.5} = \sqrt{F} \sqrt{\frac{1}{N_1} + \frac{1}{N_2}}.$$

Mann–Whitney test using Z : When a standardized Z statistic was reported, we first computed

$$r = \frac{|Z|}{\sqrt{N_1 + N_2}}, \quad d_0 = d_{0.5} = \frac{2r}{\sqrt{1 - r^2}}.$$

Mann–Whitney test using U : When the Mann–Whitney U statistic was reported, we converted U to Z via

$$Z = \frac{U - \frac{N_1 N_2}{2}}{\sqrt{\frac{N_1 N_2 (N_1 + N_2 + 1)}{12}}}, \quad r = \frac{|Z|}{\sqrt{N_1 + N_2}}, \quad d_0 = d_{0.5} = \frac{2r}{\sqrt{1 - r^2}}.$$

χ^2 statistic: When a χ^2 statistic was reported:

$$r = \frac{\sqrt{\chi^2}}{\sqrt{N_1 + N_2}}, \quad d_0 = d_{0.5} = \frac{2r}{\sqrt{1 - r^2}}.$$

Means and standard deviations: When group means and SDs were available, we computed the pooled SD

$$s_p = \sqrt{\frac{(N_1 - 1)s_1^2 + (N_2 - 1)s_2^2}{N_1 + N_2 - 2}},$$

and then

$$d_0 = d_{0.5} = \frac{|\bar{X}_1 - \bar{X}_2|}{s_p}.$$

If SDs were not reported, we recovered them from other summary statistics. When a standard error was reported, we used $s = SE\sqrt{N}$. When a 95% confidence interval for a mean was reported as $[CI^l, CI^h]$, we computed

$$\bar{X} = \frac{CI^l + CI^h}{2}, \quad SE = \frac{CI^h - CI^l}{2z}, \quad z = 1.96.$$

Regression-based effect sizes: When effect sizes were derived from regression output, we first translated the regression coefficients into an implied contrast between the real and hypothetical conditions, denoted by Δ (e.g., a difference between two condition-specific estimates, or a linear combination of coefficients when interactions were present). We then standardized this contrast by an appropriate scale parameter S constructed from reported standard deviations (or closely related quantities) and, when necessary, a two-sample scaling factor.

Specifically, for specifications that directly yielded condition-specific levels (e.g., separate intercepts or mean-equivalent coefficients), we treated the two coefficients as $\hat{\mu}_1$ and $\hat{\mu}_2$ and computed

$$d = \frac{|\Delta|}{S}, \quad \Delta = \hat{\mu}_1 - \hat{\mu}_2,$$

where S was the pooled SD (or a pooled SD analogue) built from the reported within-condition SDs.

For specifications that reported the contrast as a single regression coefficient, we set Δ equal to that coefficient and computed a standardized mean-difference equivalent using an externally provided SD estimate and the standard two-sample scaling:

$$d = \frac{|\Delta|}{S} \sqrt{\frac{1}{N_1} + \frac{1}{N_2}}.$$

When interaction terms were present and the extraction provided multiple dispersion components per condition, we constructed two variants of the scale parameter S : one that combines dispersion components assuming zero covariance (yielding d_0), and an alternative that imposes a nonzero covariance structure consistent with $\rho = 0.5$ (yielding $d_{0.5}$). In all regression-based cases, d was defined as the absolute standardized real–hypothetical contrast, and we set $d_0 = d_{0.5}$ whenever the dispersion construction did not depend on the covariance assumption.

C.2 Within-subject designs

Let N denote the number of paired observations, and we define N_Σ as the sum of the reported group sizes when needed for rank-based conversions.

Directly reported d : If Cohen's d was reported, we used it directly:

$$d_0 = d_{0.5} = d.$$

t statistic: If the within-subject correlation ρ was not available, we computed

$$d_0 = |t| \sqrt{\frac{2}{N}}, \quad d_{0.5} = |t| \sqrt{\frac{1}{N}}.$$

If ρ was available, we used

$$d_0 = d_{0.5} = |t| \sqrt{\frac{2(1 - \rho)}{N}}.$$

F statistic: Analogously, for a within-subject F statistic:

$$d_0 = \sqrt{F} \sqrt{\frac{2}{N}}, \quad d_{0.5} = \sqrt{F} \sqrt{\frac{1}{N}} \quad (\rho \text{ unavailable}),$$

and when ρ was available,

$$d_0 = d_{0.5} = \sqrt{F} \sqrt{\frac{2(1 - \rho)}{N}}.$$

Wilcoxon signed-rank using Z : When a standardized Z statistic was reported:

$$r = \frac{|Z|}{\sqrt{N_\Sigma}}, \quad d_0 = d_{0.5} = \frac{2r}{\sqrt{1 - r^2}}.$$

Wilcoxon signed-rank using V : When the Wilcoxon signed-rank statistic V was reported, we converted it to Z via

$$Z = \frac{V - \frac{N(N+1)}{4}}{\sqrt{\frac{N(N+1)(2N+1)}{24}}}, \quad r = \frac{|Z|}{\sqrt{N_\Sigma}}, \quad d_0 = d_{0.5} = \frac{2r}{\sqrt{1 - r^2}}.$$

χ^2 statistic: When a χ^2 statistic was reported:

$$r = \frac{\sqrt{\chi^2}}{\sqrt{N_\Sigma}}, \quad d_0 = d_{0.5} = \frac{2r}{\sqrt{1 - r^2}}.$$

Means and standard deviations: Let $\Delta = |\bar{X}_R - \bar{X}_H|$. If ρ was not available, we used

$$S_{\text{within},0} = \frac{\sqrt{s_R^2 + s_H^2}}{\sqrt{2}}, \quad S_{\text{within},0.5} = \sqrt{s_R^2 + s_H^2 - s_R s_H},$$

and computed

$$d_0 = \frac{\Delta}{S_{\text{within},0}}, \quad d_{0.5} = \frac{\Delta}{S_{\text{within},0.5}}.$$

If ρ was available, we first computed the SD of the difference

$$S_\Delta = \sqrt{s_R^2 + s_H^2 - 2\rho s_R s_H},$$

and then set

$$S_{\text{within}} = \frac{S_\Delta}{\sqrt{2(1-\rho)}}, \quad d_0 = d_{0.5} = \frac{\Delta}{S_{\text{within}}}.$$

D Standard Error of Cohen's d

D.1 Between-subject designs

For between-subject designs, the standard error of d was computed as

$$se(d) = \sqrt{\frac{N_1 + N_2}{N_1 N_2} + \frac{d^2}{2(N_1 + N_2)}}.$$

D.2 Within-subject designs

When ρ was not available, we used

$$se(d_0) = \sqrt{\frac{2}{N} + \frac{d_0^2}{N}}, \quad se(d_{0.5}) = \sqrt{\frac{1}{N} + \frac{d_{0.5}^2}{2N}}.$$

When ρ was available, we applied the correlation adjustment

$$se(d_0) = se(d_{0.5}) = \sqrt{\left(\frac{2}{N} + \frac{d^2}{N}\right)(1-\rho)}.$$

E Coded Study Characteristics

Table 2 lists all variables extracted from each study.

Table 2: Full List of Coded Study Characteristics

Variable	Description
<i>Source of Data</i>	
source_lab_exp	=1 if laboratory experiment
source_class_exp	=1 if classroom experiment
source_field_exp	=1 if field experiment
source_online_exp	=1 if online experiment
source_other_exp	Other type of experiment
<i>Treatment</i>	
within_subjects	= 1 if the design is within-subjects
between_subjects	= 1 if the design is between-subjects
<i>Location of Experiment</i>	
loc_country	Country
loc_continent	Continent
<i>Subject Pool</i>	
subject_uni	=1 if university students/staff
subject_general	=1 if general population
subject_other	Other population group
<i>Choice Trials</i>	
choice_list	=1 if choice list
choice_binary	=1 if sequential binary choice
choice_iterated	=1 if iterated adjusting amount
choice_bid	=1 if bid
choice_BART	=1 if balloon analogue risk task
choice_other	Other choice task
<i>Chances of Realization</i>	
prob_subject	Probability that a subject is selected for payment
prob_decision	Probability that a decision is realized for payment
prob_overall	Overall probability of a real payment
<i>Domain</i>	
domain_gain	=1 if all outcomes positive
domain_loss	=1 if all outcomes negative
domain_mixed	=1 if positive and negative outcomes mixed within trials
domain_gl	=1 if positive and negative outcomes appear across trials
endowment	Endowment provided to cover losses
<i>Reward Type</i>	
reward_money	=1 if monetary rewards
reward_health	=1 if health-related goods
reward_other	Other type of outcomes
<i>Range Information</i>	
reward_low	Smallest reward amount

Continued from previous page

Variable	Description
<code>reward_high</code>	Largest reward amount
<code>prob_low</code>	Lowest probability
<code>prob_high</code>	Highest probability
<code>delay_low</code>	Shortest delay
<code>delay_high</code>	Longest delay
<i>Publication Status</i>	
<code>published_regular</code>	=1 if published in peer-reviewed journal
<code>published_econ</code>	=1 if published in economics journal
<code>published_econ_top5</code>	=1 if published in “Top 5” economics journal
<code>published_other_field</code>	Other journal field/category

F Meta Regression Results

Table 3: Meta Regression Table

predictors	(1)	(2)	(3)	(4)
Time (vs Risk)	−0.048 (0.035)	−0.048 (0.036)	−0.042 (0.036)	−0.041 (0.036)
Within (vs Between)	0.108 (0.053)	0.106 (0.053)	0.090 (0.057)	0.091 (0.057)
Loss (vs Gain)	0.023 (0.050)	0.022 (0.049)	0.024 (0.050)	0.024 (0.050)
Mixed (vs Gain)	−0.119 (0.039)	−0.118 (0.039)	−0.133 (0.039)	−0.134 (0.040)
Param (vs Nonpar)	−0.002 (0.035)	0.000 (0.035)	0.004 (0.035)	0.004 (0.035)
Field (vs Lab)	−0.013 (0.101)	−0.014 (0.099)	−0.079 (0.151)	−0.076 (0.148)
Online (vs Lab)	−0.028 (0.074)	−0.027 (0.074)	−0.033 (0.080)	−0.035 (0.080)
Pay all Ss	0.028 (0.059)		0.027 (0.061)	
Prob. Ss Paid		0.033 (0.064)		0.030 (0.066)
Inc. all Tasks	0.072 (0.056)	0.071 (0.056)	0.042 (0.060)	0.041 (0.061)
Published	0.072 (0.130)	0.074 (0.132)	0.068 (0.170)	0.063 (0.172)
EconJ	−0.027 (0.057)	−0.028 (0.057)	−0.016 (0.064)	−0.016 (0.063)
Africa (vs N.America)			0.070 (0.167)	0.067 (0.166)
Asia (vs N.America)			0.127 (0.093)	0.128 (0.092)
Europe (vs N.America)			0.003 (0.070)	0.005 (0.069)
Oceania (vs N.America)			−0.026 (0.178)	−0.026 (0.180)
Constant	−0.070 (0.142)	−0.074 (0.144)	−0.070 (0.175)	−0.069 (0.180)

Effects significant at the 5% level are highlighted in bold, and standard errors are reported in parentheses.

G Details for Hierarchical Bayesian Model

G.1 Hyperpriors on parameters

The hyperpriors for the parameters in BHEM are specified as

$$\mu \sim \mathcal{N}(0, 5),$$

$$\nu \sim \text{Exponential}(0.5),$$

$$\sigma \sim \text{Exponential}(1),$$

$$\tau_x \sim \text{Exponential}(1).$$

G.2 Stan Code

```

1 data{
2     int<lower=1> N;
3     vector[N] cd;
4     vector[N] se;
5     int<lower=1> K;
6     matrix[N,K] x;
7     int<lower=1> P;
8     array[N] int pid;
9 }
10 parameters{
11     vector[N] eps;
12     vector[K] beta;
13     vector[P] mup;
14     real<lower=2> df;
15     real<lower=0> sigma;
16     real<lower=0> tau;
17 }
18 transformed parameters {
19     vector[N] dhat = x * beta + mup[pid] + eps;
20 }
21 model{
22     sigma ~ exponential( 1 );
23     tau ~ exponential( 1 );
24     beta ~ normal( 0 , 5 );
25     df ~ exponential( 0.5 );
26     // residuals distribution:
27     eps ~ student_t(df, 0, sigma);
28     // distribution of paper-level residuals
29     mup ~ normal( 0 , tau );
30     // measurement error model
31     cd ~ normal(dhat, se);
32 }
33 generated quantities {
34     vector[N] log_lik;
35     for (i in 1:N)
36         log_lik[i] = normal_lpdf(cd[i] | dhat[i], se[i]);
37 }
```

H List of Included Papers

Below, we include a list of papers that are currently included in the meta-analysis.

Abdellaoui, M., Baillon, A., Placido, L., & Wakker, P. P. (2011). The rich domain of uncertainty: Source functions and their experimental implementation. *American Economic Review*, 101(2), 695–723.

Alsharawy, A., Zhang, X., Ball, S. B., & Smith, A. (2021). Incentives Affect the Process of Risky Choice. *Available at SSRN 3943681*.

Baker, F., Johnson, M. W., & Bickel, W. K. (2003). Delay discounting in current and never-before cigarette smokers: similarities and differences across commodity, sign, and magnitude. *Journal of Abnormal Psychology*, 112(3), 382.

Barreda-Tarazona, I., Jaramillo-Gutiérrez, A., Navarro-Martínez, D., & Sabater-Grande, G. (2011). Risk attitude elicitation using a multi-lottery choice task: Real vs. hypothetical incentives. *Spanish Journal of Finance and Accounting/Revista Espanola De Financiación Y Contabilidad*, 40(152), 613–628.

Battalio, R. C., Kagel, J. H., & Jiranyakul, K. (1990). Testing between alternative models of choice under uncertainty: Some initial results. *Journal of Risk and Uncertainty*, 3(1), 25–50.

Beattie, J., & Loomes, G. (1997). The impact of incentives upon risky choice experiments. *Journal of Risk and Uncertainty*, 14(2), 155–168.

Bickel, W. K., Pitcock, J. A., Yi, R., & Angtuaco, E. J. C. (2009). Congruence of BOLD response across intertemporal choice conditions: fictive and real money gains and losses. *Journal of Neuroscience*, 29(27), 8839–8846.

Bohm, P. (1994). Time preference and preference reversal among experienced subjects: The effects of real payments. *The Economic Journal*, 104(427), 1370–1378.

Brañas-Garza, P., Estepa-Mohedano, L., Jorrat, D., Orozco, V., & Rascón-Ramírez, E. (2021). To pay or not to pay: Measuring risk preferences in lab and field. *Judgment and Decision Making*, 16(5), 1290–1313.

Brañas-Garza, P., Jorrat, D., Espín, A. M., & Sánchez, A. (2023). Paid and hypothetical time preferences are the same: Lab, field and online evidence. *Experimental Economics*, 26(2), 412–434.

Butler, D. J., & Loomes, G. C. (2007). Imprecision as an account of the preference reversal phenomenon. *American Economic Review*, 97(1), 277–297.

Coller, M., & Williams, M. B. (1999). Eliciting individual discount rates. *Experimental Economics*, 2(2), 107–127.

Cox, J. C., & Grether, D. M. (1996). The preference reversal phenomenon: Response mode, markets and incentives. *Economic Theory*, 7(3), 381–405.

Cubitt, R. P., Starmer, C., & Sugden, R. (1998). On the validity of the random lottery incentive system. *Experimental Economics*, 1(2), 115–131.

Etchart-Vincent, N., & l'Haridon, O. (2011). Monetary incentives in the loss domain and behavior toward risk: An experimental comparison of three reward schemes including real losses. *Journal of Risk and Uncertainty*, 42(1), 61–83.

Fan, C.-P. (2002). Allais paradox in the small. *Journal of Economic Behavior & Organization*, 49(3), 411–421.

Ferrey, A. E., & Mishra, S. (2014). Compensation method affects risk-taking in the Balloon Analogue Risk Task. *Personality and Individual Differences*, 64, 111–114.

Fidanoski, F., Dixit, V., & Ortmann, A. (2025). Risky intertemporal choices have a common value function, but a separate choice function. *I4R Discussion Paper Series*.

Freeman, D. J., & Mayraz, G. (2019). Why choice lists increase risk taking. *Experimental Economics*, 22(1), 131–154.

Gneezy, U., Halevy, Y., Hall, B., Offerman, T., & van de Ven, J. (2024). How real is hypothetical? a high-stakes test of the allais paradox. *Technical report*.

Green, R. M., & Lawyer, S. R. (2014). Steeper delay and probability discounting of potentially real versus hypothetical cigarettes (but not money) among smokers. *Behavioural Processes*, 108, 50–56.

Grether, D. M., & Plott, C. R. (1979). Economic theory of choice and the preference reversal phenomenon. *The American Economic Review*, 69(4), 623–638.

Hackethal, A., Kirchler, M., Laudenbach, C., Razen, M., & Weber, A. (2023). On the role of monetary incentives in risk preference elicitation experiments. *Journal of Risk and Uncertainty*, 66(2), 189–213.

Hinves, N. S., & Anderson, I. M. (2010). The effects of real versus hypothetical reward on delay and probability discounting. *Quarterly Journal of Experimental Psychology*, 63(6), 1072–1084.

Holt, C. A., & Laury, S. K. (2002). Risk aversion and incentive effects. *American Economic Review*, 92(5), 1644–1655.

Horn, S., & Freund, A. M. (2022). Adult age differences in monetary decisions with real and hypothetical reward. *Journal of Behavioral Decision Making*, 35(2), e2253.

Huck, S., & Müller, W. (2012). Allais for all: Revisiting the paradox in a large representative sample. *Journal of Risk and Uncertainty*, 44(3), 261–293.

Irwin, J. R., McClelland, G. H., & Schulze, W. D. (1992). Hypothetical and real consequences in experimental auctions for insurance against low-probability risks. *Journal of Behavioral Decision Making*, 5(2), 107–116.

Johnson, M. W., & Bickel, W. K. (2002). Within-subject comparison of real and hypothetical money rewards in delay discounting. *Journal of the Experimental Analysis of Behavior*, 77(2), 129–146.

Kachelmeier, S. J., & Shehata, M. (1992). Examining risk preferences under high monetary incentives: Experimental evidence from the People's Republic of China. *The American Economic Review*, 1120–1141.

Keren, G., & Gerritsen, L. E. M. (1999). On the robustness and possible accounts of ambiguity aversion. *Acta Psychologica*, 103(1–2), 149–172.

Kirby, K. N., & Maraković, N. N. (1995). Modeling myopic decisions: Evidence for hyperbolic delay-discounting within subjects and amounts. *Organizational Behavior and Human Decision Processes*, 64(1), 22–30.

Kühberger, A., Schulte-Mecklenbeck, M., & Perner, J. (2002). Framing decisions: Hypothetical and real. *Organizational Behavior and Human Decision Processes*, 89(2), 1162–1175.

Lagorio, C. H., & Madden, G. J. (2005). Delay discounting of real and hypothetical rewards III: Steady-state assessments, forced-choice trials, and all real rewards. *Behavioural Processes*, 69(2), 173–187.

Lawyer, S. R., Schoepflin, F., Green, R., & Jenks, C. (2011). Discounting of hypothetical and potentially real outcomes in nicotine-dependent and nondependent samples. *Experimental and Clinical Psychopharmacology*, 19(4), 263.

Lawyer, S. R., Prihodova, T., Prihodova, K., Rasmussen, E., Doubkova, N., & Preiss, M. (2022). Steeper delay discounting for potentially real versus hypothetical cigarettes (but not money) in Czech Republic smokers. *The Psychological Record*, 72(2), 167–175.

Löckenhoff, C. E., Rutt, J. L., Samanez-Larkin, G. R., O'Donoghue, T., Reyna, V. F., & Ganzel, B. (2016). Dread sensitivity in decisions about real and imagined electrical shocks does not vary by age. *Psychology and Aging*, 31(8), 890.

Loomes, G., & Taylor, C. (1992). Non-transitive preferences over gains and losses. *The Economic Journal*, 102(411), 357–365.

Madden, G. J., Begotka, A. M., Raiff, B. R., & Kastern, L. L. (2003). Delay discounting of real and hypothetical rewards. *Experimental and Clinical Psychopharmacology*, 11(2), 139.

Madden, G. J., Raiff, B. R., Lagorio, C. H., Begotka, A. M., Mueller, A. M., Hehli, D. J., & Wegener, A. A. (2004). Delay discounting of potentially real and hypothetical rewards: II. Between- and within-subject comparisons. *Experimental and Clinical Psychopharmacology*, 12(4), 251.

Magen, E., Dweck, C. S., & Gross, J. J. (2008). The hidden zero effect: Representing a single choice as an extended sequence reduces impulsive choice. *Psychological Science*, 19(7), 648.

Mentzakis, E., & Sadeh, J. (2021). Experimental evidence on the effect of incentives and domain in risk aversion and discounting tasks. *Journal of Risk and Uncertainty*, 62(3), 203–224.

Miller, J. R. (2019). Comparing rapid assessments of delay discounting with real and hypothetical rewards in children. *Journal of the Experimental Analysis of Behavior*, 111(1), 48–58.

Morgenstern, R., Heldmann, M., & Vogt, B. (2014). Differences in cognitive control between real and hypothetical payoffs. *Theory and Decision*, 77(4), 557–582.

Noussair, C. N., Trautmann, S. T., Van de Kuilen, G., & Vellekoop, N. (2013). Risk aversion and religion. *Journal of Risk and Uncertainty*, 47(2), 165–183.

Noussair, C. N., Trautmann, S. T., & Van de Kuilen, G. (2014). Higher order risk attitudes, demographics, and financial decisions. *Review of Economic Studies*, 81(1), 325–355.

Okouchi, H. (2023). Real, potentially real, and hypothetical monetary rewards in probability discounting. *Journal of the Experimental Analysis of Behavior*, 120(3), 406–415.

Rabin, M., & Weizsäcker, G. (2009). Narrow bracketing and dominated choices. *American Economic Review*, 99(4), 1508–1543.

Robertson, S. H., & Rasmussen, E. B. (2018). Comparison of potentially real versus hypothetical food outcomes in delay and probability discounting tasks. *Behavioural Processes*, 149, 8–15.

Robinson, P. J., & Botzen, W. J. W. (2019). Determinants of probability neglect and risk attitudes for disaster risk: An online experimental study of flood insurance demand among homeowners. *Risk Analysis*, 39(11), 2514–2527.

Robinson, P. J., & Botzen, W. J. W. (2020). Flood insurance demand and probability weighting: The influences of regret, worry, locus of control and the threshold of concern heuristic. *Water Resources and Economics*, 30, 100144.

Rommel, J., Hermann, D., Müller, M., & Mußhoff, O. (2019). Contextual framing and monetary incentives in field experiments on risk preferences: evidence from German farmers. *Journal of Agricultural Economics*, 70(2), 408–425.

Rotella, A., Fogg, C., Mishra, S., & Barclay, P. (2019). Measuring delay discounting in a crowdsourced sample: An exploratory study. *Scandinavian Journal of Psychology*, 60(6), 520–527.

Scheres, A., Sumiya, M., & Thoeny, A. L. (2010). Studying the relation between temporal reward discounting tasks used in populations with ADHD: a factor analysis. *International Journal of Methods in Psychiatric Research*, 19(3), 167–176.

Schoemaker, P. J. H. (1990). Are risk-attitudes related across domains and response modes? *Management Science*, 36(12), 1451–1463.

Schunk, D., & Betsch, C. (2006). Explaining heterogeneity in utility functions by individual differences in decision modes. *Journal of Economic Psychology*, 27(3), 386–401.

Slovic, P. (1969). Differential effects of real versus hypothetical payoffs on choices among gambles. *Journal of Experimental Psychology*, 80(3p1), 434.

Taylor, M. P. (2013). Bias and brains: Risk aversion and cognitive ability across real and hypothetical settings. *Journal of Risk and Uncertainty*, 46(3), 299–320.

Taylor, M. P. (2017). Information acquisition under risky conditions across real and hypothetical settings. *Economic Inquiry*, 55(1), 352–367.

Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. *Science*, 211(4481), 453–458.

Ubfal, D. (2016). How general are time preferences? Eliciting good-specific discount rates. *Journal of Development Economics*, 118, 150–170.

Vieider, F. M. (2011). Separating real incentives and accountability. *Experimental Economics*, 14(4), 507–518.

Vieider, F. M. (2018). Violence and risk preference: experimental evidence from Afghanistan: comment. *American Economic Review*, 108(8), 2366–2382.

Von Gaudecker, H.-M., Van Soest, A., & Wengström, E. (2011). Heterogeneity in risky choice behavior in a broad population. *American Economic Review*, 101(2), 664–694.

Wiseman, D. B., & Levin, I. P. (1996). Comparing risky decision making under conditions of real and hypothetical consequences. *Organizational Behavior and Human Decision Processes*, 66(3), 241–250.

Xu, S., Fang, Z., & Rao, H. (2013). Real or hypothetical monetary rewards modulates risk taking behavior. *Acta Psychologica Sinica*.

Xu, S., Pan, Y., Wang, Y., Spaeth, A. M., Qu, Z., & Rao, H. (2016). Real and hypothetical monetary rewards modulate risk taking in the brain. *Scientific Reports*, 6(1), 29520.

Xu, S., Pan, Y., Qu, Z., Fang, Z., Yang, Z., Yang, F., Wang, F., & Rao, H. (2018). Differential effects of real versus hypothetical monetary reward magnitude on risk-taking behavior and brain activity. *Scientific Reports*, 8(1), 3712.

Xu, S., Xiao, Z., & Rao, H. (2019). Hypothetical versus real monetary reward decrease the behavioral and affective effects in the Balloon Analogue Risk Task. *Experimental Psychology*.

Yang, X.-L., Chen, S.-T., & Liu, H.-Z. (2022). The effect of incentives on intertemporal choice: Choice, confidence, and eye movements. *Frontiers in Psychology*, 13, 989511.