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Abstract

We provide evidence that “noisy coding” is responsible for both (i) classic probability-

dependence of risk-taking and (ii) its reversal when the properties of lotteries are learned

by sampling rather than by explicit description. Guided by a stylized model of noisy

sampling, we show that simply forcing experimental subjects to sample redundant infor-

mation about the primitives of lotteries causes both types of probability-dependence to

disappear, closing the description-experience gap and resulting in broadly neoclassical

behavior. This strongly suggests that these anomalies are a joint outgrowth of decision

makers’ noisy representations of the primitives of lotteries rather than expressions of

true risk preferences.
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1 Introduction

Risk-taking has been extensively documented to deviate from the predictions of the standard

model of expected utility theory (EUT ). A key anomaly identified in the last half century
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consists in systematic probability-dependence of risk-taking. As hundreds of experiments

have shown, experimental subjects, when given explicit descriptions of lotteries, tend to be

more risk-taking for small probabilities and relatively less risk-taking for large probabilities

of winning a prize. This probability-dependence has been enshrined as a centerpiece of

alternatives to EUT such as prospect theory (Kahneman & Tversky 1979, Tversky & Kah-

neman 1992). When subjects are required to discover the properties of lotteries by sampling

from them instead of by reading explicit descriptions of their properties, the direction of

this anomaly reverses: subjects now tend to be highly risk averse for low probabilities, and

risk-taking tends to increase in the probability of winning a prize (Barron & Erev 2003, Her-

twig et al. 2004). This constitutes an important paradox under prevalent EUT-alternatives

such as prospect theory. To date, these two patterns lack a unified theoretical explanation.

Understanding the reversal in the dependence of risk-taking propensities on probabilities

when choice options are described or need to be experienced thus appears as a key ingredient

for understanding what drives risk-taking in general. Experience-based choice has been

largely explained through sampling error (Hertwig et al. 2004, Fox & Hadar 2006, Hertwig &

Pleskac 2010), but removing sampling error has failed to eliminate the gap (Hau et al. 2008,

Ungemach et al. 2009). Here, we propose a unified explanation of opposite probability-

dependence of risk-taking in described versus experience-based choices based on “noisy

cognition”. Noisy cognition has recently been proposed as an explanation of standard

probability-dependence in described choices (Zhang et al. 2020, Enke & Graeber 2023, Oprea

2024, Vieider 2024b, Frydman & Jin 2025, Khaw et al. 2025). We extend this theoretical

framework to a sampling-based setting, thereby showing that 1) noisy cognition provides

a unified theoretical setup under which to rationalize description- and experience-based

choices; 2) by leveraging the insights from the model on the causes of probability-dependence

in DfD, we are able to experimentally remove such standard probability-dependence; and

3) by combining this treatment with a similar intervention on DfE, we can finally close the

the gap between description-based choice and experience-based choice.

The description-experience gap and its significance. Suppose a decision maker (DM)

has to make a choice between a sure amount c and a lottery that pays x > c with probability

p (and y < c otherwise).1 In what has come to be the standard protocol, DMs are explicitly

told how many outcomes each lottery can produce, the payoffs each outcome results in and

1We will use this simple choice as a running example, and our experiment will exclusively employ such
simple choices. Our framework extends to losses in a straightforward manner. It can also be extended to
multi-outcome lotteries via an N-dimensional generalization; see the Online Appendix for details.
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the probabilities of each outcome. The DM uses this information to choose the lottery she

prefers. Call this standard paradigm “decision from description”, or DfD. More recently,

researchers have studied an alternative paradigm to DfD for studying lottery choice. In

“decisions from experience” (DfE) experiments (Barron & Erev 2003, Hertwig et al. 2004),

subjects are told nothing about the two lotteries but must learn all of their properties

entirely by sampling each of them. In standard DfE experiments (under the so-called

“sampling paradigm”), subjects choose how many times to sample each lottery and use the

information gleaned from these samples to make their decision.
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Figure 1: The GAP: Decisions from Description vs Decisions from Experience
The figure shows choice proportions for the risky lottery in DfD and DfE, ordered by probability of winning. The
figure shows between subject comparison based on identical tasks that are either described (DfD) or sampled
(DfE), fitted with a linear regression line. The tasks are constructed in such a way that the sure amount varies
symmetrically around the expected value of the lottery (see below for details). The error bars indicate ±1
standard error.

Figure 1 illustrates the opposite changes in risk-taking over the probability interval one

observes in DfD vs DfE based on a replication experiment we conducted (see below for

details). When facing lotteries with a small probability of winning, DMs take more risk

in DfD than in DfE. This tendency, however, completely flips for large probabilities of

winning: subjects are now much more risk-taking in experience-based choice. The inverted

responses in DfE and DfD produce what the literature has called the “decision-experience

gap” (hereafter, simply the GAP) in lottery choice. The significance of this GAP stems

from the observation that it remains an open mystery in the literature. In particular,

it has eschewed uniform modeling — constituting a paradox under behavioral models of

risk-taking such as prospect theory — and has resisted repeated attempts at closing it
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(reviewed below). Understanding the source of this gap is crucial to understanding not just

probability-dependence, but the determinants of risk-taking more generally.

Our contribution. In this paper we offer a theoretical explanation for the GAP that also

explains the nature of probability-dependence in risk-taking. Our explanation is rooted in

a kind of irony: the decision-experience gap, we argue, is a consequence not only of the

fact that DfD and DfE are psychologically different, but also of the fact that they are in an

important sense more psychologically similar than has been previously recognized. Drawing

on arguments and evidence from neuroscience, we argue that the kind of explicit sampling

that occurs in DfE also necessarily occurs implicitly in the brain when a subject reasons

about the properties of fully described lotteries in DfD. The noisy representations arising

from finite sampling can simultaneously generate classic probability-dependence as observed

in DfD and its inversion in DfE.

The inversion in DfE, in particular, is driven by the role of sampling variance in endogenously

determining when to stop sampling. This, in turn, will drive the extent of sampling error —

a key element for understanding experience-based choices (Hertwig et al. 2004, Fox & Hadar

2006, Hertwig & Pleskac 2010). A key novelty we present here is the endogenous nature of

the decision on when to stop sampling, which allows us to provide a unified representation

of decision processes at work in DfD and DfE. The prediction arising from this is striking:

ex ante risk averse DMs should sample more from lotteries with large probabilities than

from those with small probabilities. This will reduce sampling error for large probabilities

while concomitantly increasing confidence in the sampled proportions, thus inducing ex ante

risk averse DMs to take more risk for large probabilities in DfE. This mechanism is indeed

strongly supported in our data.

Our theoretical insights also allow us to explain why previous efforts to eliminate the GAP

have failed. In particular, we show that efforts to close the GAP by forcing subjects in DfE

to sample more intensively than they naturally would — as done e.g. by Hau et al. (2008,

2010), Ungemach et al. (2009), Aydogan & Gao (2020), Cubitt et al. (2022) — has the

unexpected effect of simultaneously removing the sampling variance needed for standard

probability-dependence to occur, leading to behavior broadly consistent with EUT, rather

than standard probability-dependence.2 This means the GAP can never be eliminated by

2Note that our results here are fully consistent with previous attempts at closing the GAP in similar ways,
such as the one of Ungemach et al. (2009). Just like shown by the latter, forced sampling in DfE alone does
not close the GAP. By using richer choice tasks, however, we can directly test for probability-dependence in
risk-taking, something that previous studies could not do directly.
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forcing subjects in DfE to observe larger samples alone: in order to close the GAP, we must

also increase the precision of neurally coded probabilities in DfD, and thus reduce classical

probability-dependence in described choices.

Our contribution here is to offer a particularly direct type of evidence for this hypothe-

sis, and to show that it accounts for the description-experience gap. The main novelty on

the experimental side thus emerges from a treatment that requires subjects to take large,

balanced samples from fully described choice options. Even though such samples are com-

pletely redundant from the perspective of preference-based models such as prospect theory,

they allow us to address the fundamental cause underlying noisy cognition. Our results

indicate that such samples have a large effect: after forced samples subjects make mildly

risk averse lottery choices that broadly comply with standard EUT. By applying a similar

manipulation to DfE we further show that eliminating the causes predicted by the model

to underlie the opposite deviations from EUT allows us — for the first time ever — to

completely close the description-experience GAP.

We finally supplement this evidence with an additional treatment that allows — but does

not force — subjects to freely sample from described choices. This allows us to show, first

of all, that subjects do indeed feel a need for sampling, even for fully described choices and

in the presence of considerable opportunity costs. Just as importantly, our model predicts

this treatment to introduce sampling error into description-based choice. Our data show

that this is clearly the case. By letting subjects freely sample from fully described choice

options, we introduce positive probability-dependence of the DfE kind into DfD. Although

some differences in the degree of probability-dependence remain, this achieves something

that acting on DfE alone has never achieved: we can close the GAP by acting on one of the

two experimental paradigms alone.

Fit with the literature. Our paper contributes to several literatures. First is a long run-

ning literature on probability-dependence in risk-taking and related anomalies, going back

to Preston & Baratta (1948). Such probability-dependence became a key component of

prospect theory, where it is captured by an inverse S-shaped probability weighting function

(Kahneman & Tversky 1979, Tversky & Kahneman 1992, Tversky & Wakker 1995, Wakker

2010), and is the mechanism by which that theory accounts for phenomena like the coexis-

tence of lottery play and insurance uptake and the Allais paradoxes. Numerous empirical

studies have documented systematic increases of relative risk aversion in the probability of

winning a prize — Imai et al. (2025) provide a meta-analytic overview of the evidence in
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DfD.

The second is a literature documenting the gap between DfD and DfE (Barron & Erev 2003,

Hertwig et al. 2004). Sampling error was proposed as an early explanation for the GAP (Fox

& Hadar 2006). However, subsequent investigations showed that, although sampling error

is an important contributor to the GAP, interventions including (i) eliminating sampling

error by matching probabilities in DfD to DfE, (ii) increasing the samples by offering higher

stakes, and (iii) forcing people to sample the complete urn in DfE fail to eliminate the gap

(Hau et al. 2008, Ungemach et al. 2009, Hau et al. 2010, Hertwig & Pleskac 2010, Wulff

et al. 2018). Because of this, the underlying causes of the GAP have largely remained a

mystery — see Hertwig & Erev (2009) and de Palma et al. (2014) for narrative reviews, and

Wulff et al. (2018) for a systematic meta-analysis of the decision-experience gap and possible

factors contributing to it. Cubitt et al. (2022) present a careful experimental decomposition,

which concludes that sampling error is the prime driver of the GAP (but once more fails to

close the GAP by eliminating sampling error, pointing at missing pieces in the explanation).

The third is a growing literature documenting the role noisy cognition plays in behavioral

anomalies (Natenzon 2019, Khaw et al. 2021, Frydman & Jin 2022). Most closely related

is a line of research examining how cognitive noise (and efficient ways the brain deals with

such noise) contributes to distorted perceptions of probabilities (Zhang & Maloney 2012,

Steiner & Stewart 2016, Zhang et al. 2020, Enke & Graeber 2023, Herold & Netzer 2023,

Netzer et al. 2024, Frydman & Jin 2025, Khaw et al. 2025, Oprea 2024, Vieider 2024b). More

broadly, our work is related to a literature documenting the role cognitive frictions play in

decision-making under risk (Enke & Graeber 2023, Bohren et al. 2024, Oprea 2024) and,

broader still, the way cognitive constraints and the brain’s response to these constraints

explain a wide class of anomalies in decision-making (Simon 1959, Robson 2001a,b, Netzer

2009, Robson & Samuelson 2011).3

3A recent, contemporaneous paper, Bohren et al. (2024), documents and decomposes a complemen-
tary description-experience gap that operates in richer environments than the one we (and the previous
description-experience literature) study. In evaluating realistic lotteries with many potential outcomes (e.g.,
eleven states), they show that subjects’ behavior tends to be constrained by memory limitations in DfE,
while it tends to be constrained by attentional limitations in DfD. This leads to systematic differences in
lottery choices in DfE and DfD environments – a gap that can be eliminated with aids to attention and
memory. Memory seems to play much less of a role when studying simpler choice sitautions such as the ones
we use here — see the GAP decomposition by Cubitt et al. (2022) for details.
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2 Drivers of risk-taking in DfE

What is responsible for the GAP and the reversals of probability-dependence that produce

it? Here we start from DfE, highlighting two basic features of the information structure.

The first is the well-known sampling error : unless the DM collects a very large sample, she

runs the risk of drawing misleading samples that systematically distort beliefs particularly

at extreme probabilities. The second (which has not been emphasized in the literature so

far) we will call sampling variance: because the DM’s sample is finite, she cannot be entirely

confident in the sample she draws. This will make it optimal to combine such samples with

her prior beliefs in a Bayesian fashion, distorting her posterior beliefs. As we will show,

these two features interact, and are responsible for the positive probability-dependence of

risk-taking observed in DfE.

To fully specify a model of DfE, we must describe not only how people form beliefs about

probabilities and payoffs, but also how these beliefs co-evolve with higher order beliefs about

the structure of the lotteries (e.g., the number of outcomes in each lottery’s support). To

close the model, it is therefore necessary to make a number of detailed modeling choices

about the evolution of these structural beliefs that do not directly impact the way we

interpret and design our experiments. In the Online Appendix A.1 we propose such a fully

specified model.4 But in this section, for expositional ease, we abstract from these issues

of higher order belief formation altogether by (i) assuming that subjects already know the

structure of the lotteries5, (ii) that subjects quickly identify which lottery is risky during

sampling and (iii) by focusing attention on the way subjects evaluate the risky arm. In the

fully specified, general model in Online Appendix A we discuss the implications of these

assumptions, but argue that they are qualitatively irrelevant to the key matters at hand.

Basic model structure. To model the way beliefs change as a DM samples the simple

binary lotteries in our experiment, let α be the number of draws in which the DM observed

payment x and β the number of draws in which she observed payment y. We model

4In the full version of the model in Online Appendix A, we close the model by assuming that (i) subjects
mainly use samples to build beliefs about the comparative properties of the two choice options (which seems
likely given the choice subjects face), (ii) that subjects know that they are making a risky choice and that
the choice is therefore not between two degenerate lotteries (which seems likely given the lotteries subjects
exclusively see in Part 1 of the experiment) and (iii) make a few other technical assumptions required to fully
specify the joint inference problem. The main implication of (ii) is that inferences in which the outcomes
observed in both choice options are attributed probability close to 1 will carry very high noise, in a sense to
be made precise below. Within the formalism of the model, this assumption mainly serves to explain why
subjects take more than 1 sample from each option.

5In our experiment, this is in fact a fairly realistic assumption, given that subjects entering DfE have all
just made a number of lottery choices, all with the same structure.
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this sampling process using a Beta distribution with parameters α and β, producing a

representation of the probability p of earning x equal to E[ p̂ | p ] = α
α+β (i.e. the sampled

mean probability p̂, given the true probability p).6 We will assume that the DM’s beliefs are

represented in a log-odds form. This is not necessary for any of our qualitative conclusions

in what follows, but (i) it is increasingly supported in neuroscience both empirically and

theoretically7 and (ii) it will allow us to neatly connect our characterization to a linear in log-

odds (LLO) functional form that is commonly used to characterize probability-dependence

in risk-taking in the prospect theory literature (Gonzalez & Wu 1999).

Sampling error. Successes α and failures β are, on average, sampled in an unbiased

way (i.e., ln
(
α
β

)
= ln

(
p

1−p

)
on average). However, the binomial distribution will produce

samples that underestimate small probabilities and overestimate large probabilities (unless

the samples are unrealistically large). This issue — typically termed sampling error in the

DfE literature — has been discussed as one of the key drivers of the GAP from the very

beginning (Hertwig et al. 2004). Fox & Hadar (2006) argued that sampling error may indeed

be the sole driver of the GAP, and that eliminating it ought to result in choice patterns that

converge towards those observed in DfD. The subsequent literature has thus devoted much

energy to trying to eliminate sampling error, either by incentivizing or forcing subjects to

take larger samples (Hau et al. 2008), or by forcing subjects to take large, balanced samples

from both choice options (Ungemach et al. 2009), or by only selecting samples that happen

to reflect the true underlying probability (Wulff et al. 2018). Two key insights resulting

from this literature are that 1) sampling error explains at least part of the GAP; but 2)

while reducing or eliminating sampling error narrows the GAP, it fails to close it completely.

6It is important to emphasize that our model does not require us to assume that the DM knows the
structure of the decision problem. We use a Beta distribution here purely for expositional simplicity, and
because binary lotteries is all a DM will ever experience in our experiments. Our model generalizes to any
number of outcomes by using a Dirichtlet distribution—the multi-dimensional generalization of the Beta—to
represent the different states. Indeed, we can use Dirichlet distributions defined over all possible outcomes
to explicitly model the inference process of the DM about the underlying state space in DfE—an important
element that distinguishes our approach from some of the DfE literature in economics, which has assumed
that the DM (often counterfactually) knows the objective state space or which has (in some papers) provided
this information ex ante in experiments (Abdellaoui et al. 2011, Aydogan 2021, Cubitt et al. 2022). Online
Appendix A provides details of the inference process, and of how the model we use here can be generalized
to N states of nature.

7It is common in neuroscience to assume that the brain represents the sort of evidence encoded by α and
β in terms of log-odds. This is in part because of its computational efficiency for the brain, a straightforward
consequence of the fact that new evidence can be simply added to pre-existing evidence, which is a much less
computationally expensive operation than, e.g., multiplication. It is also in part because of the empirical
success of such representations. For instance, Zhang & Maloney (2012) describe log-odds representations as
“ubiquitous”, discussing a long list of findings which can be fit by log-odds representations. Glanzer et al.
(2019) identify a unique empirical signature of log-odds representations, and argue that such representations
underlie neural representations in general.
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Unbiased samples in any given task will only obtain if the DM takes very large (technically:

infinite) samples. As a result, we should expect the ratio of α and β observed by subjects

in finite samples to produce systematically distorted impressions of the log odds. This is

particularly true of samples taken from lotteries with extreme probabilities, where sampling

error is most likely and where the gap between description and experience is most severe.
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Figure 2: Sampling error and inference error in DfE
The figures show how sampling error and sampling variance evolve as samples accumulate. Panel A shows the
likelihood to underestimate a probability of p = 0.1 as the number of samples increases (by steps of 5 samples).
The smallest number of samples for which such a probability can be accurately estimated is 10. At 10 samples,
however, the likelihood of underestimating the probability still exceeds the likelihood of estimating it correctly
or larger by 7 percentage points. This asymmetry is reduced at a decreasing rate as samples increase. Panel B
illustrates the evolution of sampling variance as a function of samples taken. Subsequent samples do not only
update the “best guess” of the probability, but also reduce sampling variance.

Panel A in figure 2 illustrates the sampling error occurring in small samples (see also Hertwig

& Pleskac 2010, for an extensive discussion). The figure illustrates the error asymmetry

— the excess likelihood of sampling a probability that is smaller than the true probability

compared to a probability that is larger — for p = 0.1. At 10 samples (the first number

that can theoretically result in a correct estimate), a DM is still 8.7 percentage points

(pp) more likely to underestimate the true probability than to overestimate it. This error

asymmetry subsequently decreases at a decreasing rate. At 100 samples (the number of non-

representative samples imposed by Hau et al. 2008 in their experiment 3), the asymmetry

in the direction of underestimation is still about 3pp. This highlights that 1) some degree

of sampling error is almost inevitable for extreme probabilities in realistic samples; and 2)

returns to sampling decrease rapidly once one exceeds a certain threshold.

Sampling variance. Because α and β are finitely sampled, they produce noisy beliefs

about the true probabilities. Note that such beliefs will be noisy in finite samples even if
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the samples are accurate on average, and the DM can never be 100% sure of whether a given

sample correctly reflects the underlying outcome-generating probability. This addition of

sampling variance to the explanation of the GAP is a novel contribution we bring to the

literature — and as we will see shortly — will provide the key to obtaining a unified

understanding of the opposite types of probability-dependence observed in DfE and DfD.8

Given samples of successes α and failures β, the “best guess” of the log-odds will be given

by ln
(
α
β

)
, which is the log-odds equivalent of the mean of the Beta distribution (the

sampled proportion of successes x). The beliefs, however, must be augmented by an error

term ε to capture variability in small samples. The log-odds formulation gives rise to

approximately normally distributed errors even with relatively few observations (see e.g.

Gelman et al. 2014, section 5.6), so that we will assume a logit-normal distribution for the

errors. Following the characterization of the logit-normal distribution by Atchison & Shen

(1980), it is straightforward to obtain an explicit solution for the sampling variance from

the draws representing the odds:

ε ∼ N ( 0 , ν2n ) , ν
2
n = 𭟋′(αn) +𭟋′(βn), (1)

where 𭟋′ represents the trigamma function, and where we now subscript the samples and

sampling variance by the number of samples n to emphasize the dependence of these quan-

tities on the number of samples taken. The sampling precision ν−2
n (i.e. the inverse of

the sampling variance) will increase in the number of draws n. We can thus interpret the

precision ν−2
n as a measure of confidence in the sampled proportion ln

(
αn
βn

)
.

Panel B in figure 2 illustrates how sampling variance evolves with subsequent samples. Let

us assume a DM starts sampling from initial parameters α0 = β0 = 1. This corresponds

to an ignorance prior with a uniform distribution attributing equal ex ante likelihood to all

probabilities (i.e. Laplace’s rule of succession).9 This distribution is centered on p = 0.5,

but shows low confidence in that estimate (all probabilities are seen as equally likely). The

distribution parameterized by α5 = 6 and β5 = 1 shows the situation after 5 samples,

all of which have yielded draws of the prize x. As one would expect, the mean estimate

8Olschewski & Scheibehenne (2024) present a discussion of different types of noise arising when DMs
need to infer (and bet on) means of a series of sampled numbers, and present a concept of “Thurstonian
uncertainty” that resembles what we here call sampling variance.

9Note that this specific value only serves illustrative purposes, and is in no way essential to our conclusions.
This will become apparent shortly, when we will describe the Bayesian integration of the evidence from the
sample with prior expectations. Online appendix A.1 further discusses the likelihood in a more general
setting based on Dirichlet distributions used to infer the structure of the decision problem jointly with the
probability attached to each state.
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of the probability is now larger. Just as importantly, the distribution has narrowed — the

sampling variance has decreased, thus increasing the ‘confidence’ the DM has in the sampled

proportion. Assume now the DM draws a sample of y. This reduces the sampled proportion

α/β, but also further increases the precision of the sample. This illustrates an important

property of the model: sampling variance is a decreasing function of the number of samples,

but constitutes a conceptually separate dimension from the specific samples drawn.10

Optimal Bayesian Inference. Taking into account sampling variance in any given (finite)

sample, a Bayesian DM will rationally combine the results of her sampling with her prior

beliefs to draw inferences about the true underlying probability. Continuing with our log-

odds characterization of beliefs, assume that the prior, too, takes logit-normal form:

ln

(
p

1− p

)
∼ N

(
ln

(
p0

1− p0

)
, σ2

)
. (2)

As we show in more detail in Appendix A.2, the posterior expectation of the log-odds being

inferred, ln
(

p̂
1−p̂

)
, conditional on the true log-odds, will take the following form:

E
[
ln

(
p̂

1− p̂

) ∣∣ ln( p

1− p

)]
= γn ln

(
αn

βn

)
+ (1− γn) ln

(
p0

1− p0

)
= ln

(
αn

βn

)
+ (1− γn)

[
ln

(
p0

1− p0

)
− ln

(
αn

βn

)]
,

(3)

where γn = σ2

σ2+ν2n
is the Bayesian evidence weight, i.e. the weight put on the sampled

proportion relative to the prior expectation ln
(

p0
1−p0

)
. Importantly, γn is itself an increasing

function of the number of samples n taken, since it is inversely proportional to the sampling

variance ν2n. The equation above gives us some interesting intuitions (technical details in

Online Appendix A). Defining δn ≜
(

p0
1−p0

)(1−γn)
and substituting it into the first line

in (3) yields a linear in log-odds probability weighting function as often used in prospect

theory (Gonzalez & Wu 1999).11 The second line in (3) illustrates why this results in biased

inferences: even for choice proportions αn/βn that are on average correct, the regression to

the mean of the prior will systematically distort the inferences drawn.12

10Technically this orthogonality is not perfect, since both will depend on the number of samples drawn
to some extent. The dependence will be particularly strong for very small and extreme samples, e.g. when
only one single outcome has been observed.

11This conclusion holds because on average the sampled proportions α/β will be equal to the true odds.
12The expression indeed shows the definition of bias, inasmuch as it illustrates regression to the mean of

the prior as a source of systematic deviations from ln
(

αn
βn

)
, which is an unbiased estimator of ln

(
p

1−p

)
on

average. It is important to note that — notwithstanding this systematic bias — the inference process is
optimal given some constraints on sampling (e.g. in the presence of opportunity costs or time pressure, both
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The discriminability equation. One key insight from the model, which will allow us

to characterize behavior in DfE, derives from the observation that sampling variance and

sampling error will interact. In particular, sampling variance — and the resulting regression

to the mean of the prior described above — will determine at what point a DM concludes

that she has sufficient information to stop sampling. This constitutes a key innovation

of our approach, given that the DfE literature has paid relatively little attention to the

decision when to stop sampling.13 Here we will show that the sampling-stopping decision

is endogenous to 1) the prior expectation of the DM; and 2) the precision of the sample

drawn. The decision on when to stop sampling will in turn determine sampling error, and

thus the positive probability-dependence or risk-taking observed in DfE.

To understand why DMs tend to undersample in DfE, we leverage the result on probabilistic

inferences in equation (3). Assume a DM wants to maximize expected value, conditional on

her inference on the probability of winning. In the simple choice problems we use this entails

a choice rule in which the DM trades off the inference on the log-odds in (3) against the

log cost-benefit ratio, ln
(
c−y
x−c

)
. For expositional simplicity, we will assume in this section

that the log cost-benefit ratio (unlike the log-odds) is objectively perceived, though clearly

it will in fact be learned by sampling just as the log-odds are. This assumption will have

no impact on our qualitative predictions here but greatly simplifies the exposition.14 In

Appendix A.2, we show that this yields the following discriminability equation:

ψn =
γn × ln

(
αn
βn

)
− ln

(
c−y
x−c

)
− ln(θn)

νn × γn
, (4)

where θn ≜
(
1−p0
p0

)1−γn
is the inverse (weighted) prior expectation. This can be interpreted

as a measure of “risk aversion” within the model generated by the distorting influence

of which apply in the context of our experiments). This happens because the bias introduced in each single
inference must be traded off against the resulting reduction in the variance across trials. The estimator used
here is optimal in the precise sense that it minimized the mean squared error. Bishop (2006), ch. 3, provides
a proof of this optimality in a machine learning context.

13Some papers have described recency bias and the importance of the last samples, but as far as we are
aware none has truly endogenized the sampling process. E.g., Hau et al. (2008) discuss opportunity costs
of sampling and their dependence on the stakes of the experiment. Hertwig & Pleskac (2010) point at
the strongly decreasing marginal informational content of additional samples as a possible reason for small
samples, without however formalizing this intuition.

14It is straightforward to extend the model to include noisy representations of cost-benefit perceptions —
see Vieider (2024b). Such noisy representations can, in fact, quantitatively enhance the patterns we describe
here in sequence. In our structural model estimates in Online Appendix E, we take explicit account of the
effects of sampling on the DM’s beliefs about the cost-benefit ratio.
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of the prior.15 In other words, risk aversion in the model can result from a pessimistic

prior expectation by the DM about the types of lotteries she will face.16 The subscript n

indicates the current sample count, which plays an important role in the characterization

of the dynamics underlying the equation.

Prior expectations and optimal stopping. Equation (4) trades off two dimensions:

the weighted log-odds, γn × ln
(
αn
βn

)
, which present evidence in favor of taking the lottery;

and the evidence against the lottery, given by the level of pessimism in θn, and the log-

cost benefits. These two dimensions are weighed by their common standard deviation

νn γn, which measures the degree of confidence in the quantities being traded off. Given the

normality assumption on likelihood and prior, ψn will follow a standard normal distribution.

The cumulative distribution function of ψn can thus directly be used to predict choice

probabilities. In a sampling framework such as DfE, however, αn, βn, and the derived

quantities νn =
√

𭟋′(αn) +𭟋′(βn) and γn = σ2

σ2+ν2n
, as well as ψn itself, will all evolve as

a function of samples n. A central intuition underlying our model is that a DM will stop

sampling only once she feels that she has sufficient information to reach a decision.

Intuitively, equation (3) thus measures the accumulation of information as samples are

taken. If ψn becomes sufficiently positive, indicating information favorable to the lottery,

the DM will stop sampling and choose the lottery; if ψn becomes sufficiently negative, the

DM will stop sampling and choose the sure amount instead. Unless a threshold is reached,

she will keep sampling.17 Reaching a positive versus negative decision threshold, however,

will depend on prior expectations incorporated in θn (as well as on the log-cost benefit ratio),

making the problem asymmetric. Let us assume for simplicity that costs and benefits are

equal. Intuitively, a risk averse DM— i.e. a DM with pessimistic prior expectations p0 < 0.5

— will have less trouble accepting negative evidence (draws of the lower outcome y) and

reaching the negative discriminability threshold than reaching a positive discriminability

threshold after observing the same proportion of draws of the prize x.

Figure 3 shows an illustration how discriminability ψn evolves. The illustration is based

15We conceive of the quantities governing the prior p0, and σ
2, as constant for the duration of the experi-

ment. This is plausible in our setting where 1) subjects face the same choices in DfE that they have phased
in part 1 on DfD; and 2) the experiment is very short.

16Note that we do not assume the prior to entail risk aversion. We rather treat it as a free parameter
through which any underlying risk aversion of the DM may manifest in the model.

17What amount of information exactly is deemed ‘sufficient’ by a DM can thereby be subjective and vary
from DM to DM. In other words, the precise thresholds used do not affect the qualitative insights derived
here. What is important is that the DM will stop sampling once ψn reaches a sufficiently extreme value,
passing a subjective discriminability threshold. Note that thresholds may themselves change over time, as
is the case in drift-diffusion modeling. Again, this does not affect the qualitative insights we derive here.
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Figure 3: Evolution of discrimnability with samples
The figure shows how discriminabiity in equation (4) evolves with a series of 10 balanced samples. The DM is
assumed to be mildly risk averse, with p0 = 0.45 and to face equal costs and benefits. Panel A illustrates what
happens when the outlying observation is drawn in sample 7, whereas panel B illustrates what happens if it is
drawn in sample 4 instead.

on a slightly pessimistic DM with p0 = 0.45. For simplicity, we assume costs to be equal

to benefits, so that their logged ratio drops out of the equation. To focus ideas, we will

further assume that in a series of 10 samples, the DM observes exactly one instance of x if

p = 0.1 (and 9 of y), and just 1 of y for p = 0.9. The discriminability thresholds are set at

±1.28, corresponding to a one-sided test with a 90% confidence level. Panel A depicts the

situation in which the less likely outcome is observed in the 7th sample. When sampling

from p = 0.1, ψn hits the discriminability threshold after a uniform series of 5 ‘failures’ y.

The DM stops sampling, and chooses the safe option. While the samples for p = 0.9 are the

mirror image of those for p = 0.1, the evolution of ψn is not. This asymmetry arises from

the pessimism in the initial prior. The DM takes 2 more samples, at which point ψn reaches

the threshold, and the DM chooses the lottery. Remarkably, this happens even though the

7th and last sample is a draw of a ‘failure’ y.18 This illustrates the effect of the increase

in precision: even though the DM now slightly under -estimates the true probability, she

nevertheless chooses the lottery because she has high confidence in her estimate.

Panel B illustrates a further implication: that even the position of the outlying observation

in the 10 samples will influence the decision when to stop sampling. Here, the less likely

event is observed in the 4th draw instead of the 7th. While the positive threshold is

18The discriminability equation seems to make a small ‘jump’ upon sampling of the failure y. This arises
from the definition of sampling variance ν2n = 𭟋′(αn) +𭟋′(βn), since the marginal increase of the trigamma
function is largest at small values.
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still reached after 7 samples, reaching the negative one now requires one more sample

than before.19 There is also a general implication that emerges from this illustration: all

sequences of 10 samples we used in the example are accurate in the sense that taking 10

samples results in the true underlying choice proportion being sampled. Nevertheless, the

endogenous decision on when to stop sampling produces sampling error in all four cases.

This illustrates how sampling variance and sampling error interact, given that the former

— in combination with the prior expectation — will determine when a DM stops sampling.

In reality, 10 samples will typically not correctly reflect the true probability, as illustrated

in figure 2 above. This will further increase the distortions introduced by the endogenous

sampling-stopping decision.

The interaction between precision and sampling error results in a testable insight: risk

averse DMs should sample more from large probability lotteries than from small probability

lotteries on average, whereas risk-loving or optimistic DMs should do exactly the opposite.

This prediction is new, and has not previously been examined in the literature, making it

a test that is diagnostic of the value of our model for the prediction of sampling behavior.

Implications for risk-taking. The decision on when to stop sampling, described above,

will in turn contribute to determining risk-taking patterns (jointly with the log-cost ben-

efits). Risk averse DMs facing small probability lotteries will stop sampling early because

the accumulation of failures arising from sampling error reinforces the prior expectation.

This will suggest a choice of the sure option, explaining widespread risk aversion for small

probabilities. For large probabilities, however, the initial series of successes drawn by a

majority of DMs clashes with their pessimistic expectations. This prevents the positive dis-

criminability threshold from being reached, and leads DMs to take larger samples. These

larger samples will still on average look favorable due to sampling error, which we have

seen to only decrease very slowly in the number of samples (cfr. figure 2, panel A).20 The

increased precision of the larger samples will concomitantly reduce the weight put on the

pessimistic prior expectation (i.e., θ =
(
1−p0
p0

)1−γ
converges to 1 as γ increases, and ln(θ)

goes to 0). This explains relatively high risk-taking for large probabilities, and thus positive

probability-dependence of risk-taking in DfE. It also results in a testable prediction: the

19An interesting consequence of this sort of stopping decisions may be apparent recency effects in DfE, as
discussed e.g. by Erev & Barron (2005). In the context of our model, however, such recency effects would
be mostly driven by the decision on when to stop sampling (see also Wulff et al. 2018, for a discussion of
this point).

20It is important to note that these are average patterns. Some DMs may draw very favorable samples
from small probability lotteries or very unfavorable samples from large probability lotteries, and thus take
the opposite decisions.
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substantial risk-taking for large probabilities — and the positive probability-dependence

more generally — ought to be driven primarily by DMs who are ex ante highly risk averse.

3 Sampling in Decisions from Experience

3.1 Experiment description

In Experiment 1, we replicate the GAP, as shown in figure 1 in the introduction. Subjects

face 18 distinct binary choices between a sure amount c and a lottery paying x > c with

probability p, or else y = 0. We further randomly pick 4 choice problems to be repeated.

The lotteries vary p across 0.1, 0.15, 0.2, 0.8, 0.85 and 0.9 and vary payoffs x and c. The

sure amounts c for a given probability include the expected value (EV ) of the lottery, and

two amounts that are symmetric around the EV of the lottery (i.e. c = EV (x, p) ± h,

where h is $0.3 or $0.4). This will allow us to get a rich picture of behavior, and is

crucial to identify probability-dependence in risk-taking. We did not include intermediate

probabilities because we followed the DfE literature in our task selection, where the use of

intermediate probability is rare since they are typically not very informative for the GAP.21

Lotteries are described to subjects as “bags,” containing 20 “coins,” each of which is worth

a different amount of money. At the end of the experiment, a lottery is randomly selected

and a single coin is drawn from the bag to determine the subject’s payment.

(a) DfD Treatment (b) DfE Treatment

Figure 4: Screenshots from Experiment 1.

Treatments. Experiment 1 consists of two treatments. In the DfD treatment, the subject

is explicitly told the properties of each lottery (i.e., the contents of each bag); Figure 4a

shows a screenshot. A pair of radio buttons below the lottery description allows the subject

to make and submit a choice between the two lotteries. In the DfE treatment, the subject

is instead shown two buttons, one for each of the two lotteries/bags. Figure 4b shows a

screenshot. When the subject clicks on the button, she is shown a single realization of the

lottery (i.e., a single draw from the bag, with replacement). The subject is told nothing

21This was also meant to limit the number of clicking necessary in the experiment, given that the forced
sampling treatments described below require 41 mouse clicks per task.
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about either lottery and must learn all of their properties by sampling. The subject in

the Figure 4b example has just clicked the “Sample Bag A” button and drawn $2. Each

sample is shown for 0.5 seconds. Subjects are allowed to sample as many (or as few) times

as they like from the two bags, with no time constraints. Below the sampling buttons are

the same two radio buttons shown beneath the lottery descriptions in DfD, and the subject

can choose one of the lotteries to determine her payment whenever she is ready.

Stages. Each session in the experiment proceeds in two stages. In Stage 2, subjects

experience their main treatment: 22 randomly ordered lottery choices under DfD or DfE,

depending on treatment. In Stage 1, subjects face the same 22 binary choice tasks under

DfD (in a different random order). We included Stage 1 for several reasons. First, doing

this allows us to examine the GAP both within-subject (by comparing Stage 1 and Stage

2 in the DfE treatment) and between-subjects (by comparing Stage 2 in the DfE vs. DfD

treatment). Second, including Stage 1 is useful for fixing prior beliefs about lotteries and

linking DfD and DfE behavior.

Implementation. We ran 99 subjects through the DfD treatment and 99 subjects through

the DfE treatment on Prolific. We paid all subjects $6 and selected 10% of them to be paid

based on a lottery outcome from a randomly selected task. The median subject spent 18

minutes in the experiment and the average subject earned $18.67 per hour. Instructions,

including 4 comprehension questions, are included in Online Appendix F.

3.2 Results: Sampling, Sampling Error, and Risk-Taking

Sampling patterns. We start by testing the key edogenous sampling predictions: (i)

sampling behavior should vary with the probability of the prize, p; and (ii) this dependence

should vary according to the subject’s pre-existing level of risk aversion as captured by the

prior mean. To test this, in first approximation we categorize DfE subjects according to

their risk aversion using their propensity to choose risky lotteries in Stage 1 by quantifying

the proportion of Stage 1 risk averse choices subjects make.22

In Figure 5, panel A, we plot the mean number of samples taken from the risky option in

Stage 2 as a function of probability p for subject classified as High and Low risk aversion

based on a median split of risk averse choices in the first, DfD stage of the experiment. We

find clear evidence of the predicted pattern: highly risk averse subjects sample substantially

22As we will explain shortly, we expect behavior in DfD to also be affected by sampling variance, so that
this measure is only a proxy for risk aversion as captured by the prior. The results we report are, however,
robust to using the structurally estimated prior mean instead.
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more at high than at low probabilities; relatively risk tolerant (Low risk aversion) subjects

show (somewhat weaker) evidence of the reverse sampling pattern. Given that most subjects

in our sample are risk averse this results in an overall average tendency for subjects to

sample more for larger than smaller probabilities. These results strongly support the idea

that sampling precision interacts with prior beliefs to determine sampling behavior in DfE.
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Figure 5: Samples by probability and risk aversion
Panel A shows the number of samples taken from the risky option by probability and risk aversion. Risk aversion
is assessed as the proportion of safe choices in the first, DfD part of the experiment, after removing repeated
tasks. The categorization is obtained using a median split. Error bars show ±1 standard error. Panel B shows
the distribution of actual sampling error in the samples taken for a small probability of p = 0.1 versus a large
probability of p = 0.9. Dashed vertical lines show the true underlying probabilities generating the samples.

Endogenous sampling choices drive sampling error. Panel B in figure 5 shows the

resulting samples drawn for a small probability of p = 0.1 and for a large probability of

p = 0.9 (findings for other probabilities are similar, and shown in Online Appendix E).

The figure shows the direct consequence of smaller samples taken for p = 0.1 on average by

a risk averse subject population: the error of underestimating a probability of p = 0.1 is

clearly more frequent than the error of over-estimating p = 0.9. Across all small probability

lotteries, our subjects gather samples that produce a smaller probability than the true one

in 66% of cases overall, and an accurate sample in 3.4% of cases. For large probability

lotteries this is reversed, with 55% of samples over-estimating the true probability, and

only 2.2% resulting in a correct estimate. Sampling error is clearly more severe for small

probabilities than for large probabilities — a direct consequence of the smaller number of

samples taken for small probabilities on average.

Individual-level analysis. So far we have only shown aggregate patterns. An important

conclusion from our simulations was, however, that behavior will depend on individual-level
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expectations, as well as on the fortuitous samples drawn — including both the proportion

of winning outcomes, and the sequence in which these proportions are drawn. Here, we

use regression analysis to show that the results we document above are robust (i) to using

continuous measures of risk aversion; (ii) to conducting this analysis at the individual level;

and (iii) to using structurally estimated measures of prior expectations instead of the proxy

constituted by proportion of choices of the sure amount in DfD. All of these effects are

fully in line with the model predictions delineated above, and thus support our account of

endogenous sampling, and how it leads to sampling error.

dep. var: number of samples abs. sampling error
reg. (1) reg. (2) reg. (3) reg. (4) reg. (5) reg. (6)

probability 0.288 0.331 0.326 -0.027 -0.026 -0.020
(0.082) (0.085) (0.083) (0.008) (0.008) (0.008)

risk aversion 0.569 0.562 -0.016 -0.021 -0.009
(0.291) (0.266) (0.012) (0.011) (0.010)

prob × risk av. 0.618 0.645 -0.025 -0.030 -0.004
(0.087) (0.086) (0.009) (0.008) (0.001)

samples -0.018
(0.009)

constant 3.635 3.705 3.700 0.046 0.006 0.072
(0.283) (0.289) (0.284) (0.011) (0.023) (0.011)

observations 2178 2178 2178 2178 2178 2178
subjects (clusters) 99 99 99 99 99 99

Table 1: Regression analysis of samples taken and sampling error
Regressions in the table are based on a Bayesian outlier-robust regression model. Robust regression is imple-
mented by means of a student-t distribution with 2 degrees of freedom, with random intercepts to cluster errors
at the subject level. Regressions (1), (2), and (3) use the total number of samples from the risky option as
dependent variable. Regressions (4), (5), and (6) use the absolute sampling error, defined as the true proba-
bility minus the inferred probability for small probability lotteries, and as the inferred probability minus the
true probability for large probability lotteries, as dependent variable. Numbers in parentheses indicate standard
errors. Risk aversion is captured by the proportion of risk averse choice in phase 1 DfD in columns (1), (2), and

(4), and by the inverse log-odds prior ln
(

1−p0
p0

)
in regressions (3), (5) and (6). Probability and risk aversion

are normalized by taking z-scores.

Table 1 shows regressions detailing individual-level patterns. Regression (1) shows that

samples taken increase in the probability of winning across all subjects. Regression (2) uses

proportions of risk averse choices in the initial DfD phase to show that the larger overall

samples are mainly driven by risk aversion, and that probability-dependence of the number

of samples taken strongly increases in pre-existing risk aversion. Regression (3) further

probes the robustness of these results by instead using the theoretically correct measure of
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pessimism in the prior expectation, ln
(
1−p0
p0

)
, which we obtain from structural estimations

of equation (4) from the first phase DfD data.23 All the results remain stable.

Regressions (4) through (6) present regressions of the absolute sampling error (coded in the

direction of underestimating the small likelihood event). Regression IV uses the independent

variables from regression (2) to show that (i) sampling error decreases in the probability of

winning for average levels of risk aversion; and (ii) that sampling error for large probabilities

decreases (and sampling error for small probabilities increases) in the level of pre-existing

risk aversion. Regression (5) shows that all of these effects are stable to using the correct

prior expectation from regression (3) instead. Finally, regression (6) adds the number of

samples as an explanatory variable, and shows that sampling error indeed decreases in

the samples taken, as one would expect. The number of samples taken thereby absorbs

almost the entire effect of pre-existing risk aversion in the reduced form equations (4) and

(5). Taken together, these results show that 1) the number of samples taken increases in

the level of pre-existing risk aversion; 2) risk aversion particularly increases samples for

large probabilities, while it lowers them for small probabilities; and 3) the same individual

characteristics also determine the extent of sampling error. This constitutes a first key piece

of evidence in support of the mechanisms predicted by our noisy cognition model.

Number of samples, sampling error, and risk-taking. To complete the picture of

what drives behavior in DfE, we next look at risk-taking choices. Table 2 reports a series of

Probit regressions to investigate drivers of risk-taking at the individual level. Regressions

(1) and (2) show the reduced form regressions using the same characteristics used above

to predict sampling behavior and absolute sampling error (using the risk averse choice

proportion and the estimated inverse prior log-odds, respectively). Risk taking increases in

the probability of winning. Remarkably, however, risk taking particularly increases in the

probability of winning for DMs with the highest pre-existing degree of risk aversion. This

result constitutes direct evidence for the mechanism predicted by our model.

Regression (3) further adds the number of samples from the risky option and the sampling

error (coded as the error in samples in favor of the lottery). Both are highly significant pre-

dictors of the level of risk-taking. They also takes up most of the effect previously captured

by the interaction between the probability of winning and pre-existing risk aversion, which

23Note that to be applicable to the DfD data, the true underlying log-odds ln
(

p
1−p

)
have to be substituted

for ln
(

α
β

)
in that equation. Section A in the Online Appendix discusses the theoretical rationale for this

substitution, and section E provides the details about the econometric estimation.
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dep. var: choice of lottery over sure amount
reg. (1) reg. (2) reg. (3) reg. (4)

probability 1.134 1.199 1.775 1.714
(0.095) (0.095) (0.123) (0.131)

risk aversion 0.053 0.112 -0.188 -0.162
(0.105) (0.110) (0.151) (0.147)

prob × risk av. 0.625 0.735 0.259 0.029
(0.093) (0.099) (0.050) (0.056)

nr. of samples 0.877 1.534
(0.052) (0.085)

samp. error for lottery 0.673 0.790
(0.116) (0.119)

samp. error × samples 1.160
(0.017)

constant 0.398 0.436 0.706 0.373
(0.106) (0.104) (0.147) (0.153)

observations 2178 2178 2178 2178
subjects (clusters) 99 99 99 99

Table 2: Regression analysis of risk-taking
The table shows Bayesian Probit regressions of risk-taking on a number of independent variables. Errors are
clustered at the subject level using random intercepts. Probability, risk aversion, sampling error, and samples
from the risky option are normalized by taking z-scores. The sampling error is defined in the direction of favoring
the lottery. Standard errors are shown in parentheses.

nevertheless remains significant. Regression (4) further adds the interaction between sam-

pling error the number of samples taken. Risk-taking strongly increases in this interaction.

At the same time, the interaction between a pessimistic prior expectation and the proba-

bility loses its significance. This highlights the interactive role sampling error and number

of samples play in our model: sampling error in favor of the lottery will be most influential

in determining decisions when the DM has high confidence in the sampled proportion.

Taken together, the regressions above strongly support the mechanism predicted by our

model to drive positive probability-dependence of risk-taking in DfE. Regressions (1) through

(3) in table 1 illustrate the effect of pre-existing risk aversion, and its interactions with prob-

ability, on the number of samples taken. Regressions (4) through (6) in that same table

illustrate the effect this has on sampling error. Finally, regressions (1) through (4) in ta-

ble 2 illustrate the effect that pre-existing risk aversion interacting with the probability of

winning — mediated by the number of samples, the sampling error, and their interaction

— have on risky choice.
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3.3 Experiment 2: DfE+forced Treatment

In Experiment 2, we attempt to eliminate the GAP by forcing DfE subjects to sample from

each lottery (i) using a representative sample and (ii) via a relatively large number of draws.

The balanced nature of the samples is meant to eliminate sampling error. The large number

of draws is meant to increase sampling precision, thereby inducing subjects to rely on the

sampled information more than they rely on their prior expectation.

Figure 6: Screenshot from the DfE+forced treatment (Experiment 2).

We do this using the DfE+forced treatment, pictured in Figure 6. This treatment is identical

to DfE except that subjects are required to sample all twenty “coins” from each bag (lottery)

without replacement before making a choice between lotteries. Below each button, the

subject is shown how many times she has sampled from each bag and the total number of

draws she must make in total (set to 20 in this treatment). The radio buttons for submitting

the final lottery choice do not appear on the subject’s screen until she has sampled all 20

coins from each bag. In terms of the model, requiring the subject to exhaustively sample a

frequentist representation of each lottery means that subjects observe samples α, β for each

lottery such that α
α+β = p, removing scope for sampling error. By setting the number of

elements in the frequentist representation to 20, we force subjects to sample far more times

than they are observed to do in the DfE treatment, thereby increasing the precision ν−2.

In all other respects the experiment is identical to the DfD and DfE treatment.

Forced sampling eliminates probability-dependence in DfE. Figure 7 plots choice

behavior from DfE+forced, and reproduces behavior from DfE for comparison. As pre-

dicted, forced sampling produces a dramatic effect on behavior, particularly in reducing

the high levels of risk taking observed for large probabilities. Importantly, as predicted,

DfE+forced does this largely by eliminating probability-dependence.

To analyze this more systematically, we calculate choice proportions and their standard

errors for each of the 18 tasks. We then aggregate choice proportions across tasks weighing

them by the inverse of their squared standard errors, as done in meta-analysis or mea-

surement error models. Regressing the choice proportions of the lottery on the probability

of winning provides a direct test of probability-dependence in the choice proportions (see

22



0.20

0.25

0.30

0.35

0.40

0.45

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
probability

pr
op

or
tio

n 
ris

ky
 c

ho
ic

es

condition

DfE

DfE+forced

Figure 7: Effects of forced sampling in DfE on choice proportions
The figure shows the effects of forced complete sampling in DfE from both options. The error bars indicate ±
1 standard error.

Online Appendix C for details). In DfE, this produces a coefficient on p of 0.284, with a

credible interval of [0.226 , 0.347], showing how risk-taking systematically increases in the

probability of winning. Regressing choice proportions observed after forced sampling on the

probability of winning the prize, we find a slope of 0.080, with a CrI of [−0.020 , 0.182].

This slope is significantly smaller than in DfE. The slope is also not significantly differ-

ent from 0 — positive probability-dependence of risk-taking in DfE has disappeared upon

forced sampling.24 Notwithstanding these significant changes on the DfE side, however, the

GAP does not close: although it has narrowed to 8.4 pp, it remains substantial as well as

statistically significant, with a CrI of [0.053 , 0.115].

Our results are consistent with previous findings on forced sampling in DfE. Pioneering the

use of forced sampling in DfE, Ungemach et al. (2009) found the GAP to narrow, but not

close (see also Cubitt et al. 2022). Our conclusions are fully consistent with this finding, but

strengthen it further. In particular, our richer test stimuli allowed us to test probability-

dependence after forced sampling directly, and to show that it disappears — something

Ungemach et al. (2009) could not do due to the smaller number of task and absence of

variation in the EVs of the choice options conditional on a given probability.

24One reason why there is still a slight positive tendency in risk taking could be memory effects. While the
previous literature using similar settings to our own has not found much of a role for memory (Ungemach
et al. 2009, Cubitt et al. 2022), we do find that the more recent half of samples has a slightly stronger effect
on risk-taking than the first half. This is consistent with effects of memory documented by Bohren et al.
(2024), albeit in a somewhat different setting.
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4 Closing the Gap: Forced sampling in DfD

Forced sampling leads to dramatic changes to DfE behavior, but it does not close the

GAP. This happens because — while forced sampling removes probability-dependence in

DfE — DfD still exhibits risk-taking that declines in the probability of winning. The key

reason for this emerging from our model is that very similar factors also afflict DfD. Risk-

taking decreasing in the probability of winning in DfD, we hypothesize, is a consequence of

imprecision in the perception of probabilities in DfD. Because of this, in order to fully close

the GAP, we have to increase the precision in probability perceptions in DfD in a manner

symmetric to the way we did in DfE.

We start from the observation that probabilities will have to be neurally represented by

spikes or action potentials before entering the decision processes. This will result in a

noisy signal r for the described log-odds, as modelled by Khaw et al. (2025) and Vieider

(2024b). Here, we hypothesize that this noisy signal can be conceived of as a ratio of

“neurally sampled” evidence in favor of the lottery and against it, and summarized by a

quantity ln(α̂/β̂) similar to the ratio of real samples used to characterize DfE above. This

follows the seminal discussion of log-odds coding by Gold & Shadlen (2001), who forcefully

argue that it is efficient for the brain to summarize evidence about an uncertain hypothesis

using a population of neurons in favor of the hypothesis and a population of “anti-neurons”

summarizing the evidence against.

This conceptual framework yields several insights: 1) the noisy signal for the true log odds

can be conceived of as a ratio of firing rates signaling evidence in favor and against the

lottery, ln
(
α̂

β̂

)
∼ N

(
ln

(
p

1−p

)
, ν2

)
; 2) finite neural spike counts or activation potentials

making up α̂ and β̂ will yield noisy representations in single trials; and 3) even though the

representation will be correct on average, thus avoiding the sampling error that affected

DfE, the lack of precision in the signals will yield regression to the mean of the prior just

as in equation (3) (see online appendix A for further details).

Closing the Gap. This explanation suggests a distinctive test for the hypothesis that

imprecision in neural representations is responsible for classic probability-dependence in

DfD. If it is true that probability-dependence in DfD is driven by the noisy perception of

described probabilities as hypothesized above, then providing additional information in the

form of forced, balanced samples ought to remove this probability-dependence, just as it

did in DfE. This makes for a powerful test because 1) from the point of view of standard

models such as prospect theory, the information gleaned from samples is fully redundant
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in the DfD treatment; and 2) combining sampling information with described information

ought to allow us to increase the precision of the neural log-odds representations, thus

reducing or even eliminating probability-dependence in DfD. This provides a particularly

crisp test of noisy coding accounts of probability-dependence, since we can directly act on

the supposed causes of the phenomenon to try and remove it.

4.1 Experiment 3: the DfD+Forced Sampling Treatment

In Experiment 3, we attempt to eliminate the GAP by forcing DfD subjects to redundantly

sample large, representative samples from each lottery. In DfD+forced we show subjects

the same information about lotteries as we do in the DfD treatment (pictured in Figure

4), but we also provide subjects the sampling tools pictured in Figure 6 below the explicit

description, and force subjects to draw 20 times from each just as in DfE+forced. Indeed,

the DfD+forced treatment is identical to the DfE+forced treatment, except that lotteries

are fully described to the subject prior to, during and after sampling. This is an original

treatment that has not been tested before in the literature.

Forced sampling eliminates probability-dependence from DfD. Panel A of Figure

8 shows the effect of forced sampling in DfD, by plotting average choice proportions for

DfD+forced and (for comparison) DfD. As predicted, we find that forced sampling has

exactly the reverse effect on DfD as on DfE. At small probabilities, we find a sizeable

decrease in risk taking at most probabilities.25 For large probabilities, on the other hand,

risk taking increases with forced sampling in DfD. Thus, just as predicted by noisy cognition

models like ours, providing completely redundant information to subjects has a sizable effect

on choices in DfD. While probability-dependence in DfD is −0.172, CrI [−0.239 , −0.102],

it has disappeared after forced sampling (slope 0.058, CrI [−0.039 , 0.157]).

Closing the GAP. What does the elimination of sampling error and the increase in preci-

sion via forced sampling (in both DfE and DfD) do to the GAP? Panel B of figure 8 shows

that the choice proportions are now very similar. Probability-dependence in DfD+forced,

at 0.058 (CrI [−0.039 , 0.157]), and in DfE+forced, at 0.080 (CrI [−0.020 , 0.182]), are not

significantly different from each other. Nor does risk-taking in either treatment show any

sign of probability-dependence: the opposite patterns in DfD and in DfE disappear upon

forced sampling, converging to mild risk aversion as in standard EUT. As our structural

25The exception is p = 0.15. This is, however, in part caused by the aggregation across different values of
sure payments, c. For this particular probability, the changes across different sure amounts go in opposite
directions canceling each other out – see Online Appendix E for the plot broken down by values of c.
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Figure 8: Effects of forced sampling on choice proportions
The figure shows the effects of forced complete sampling in description-based choice. Panel A shows the effect
of forced sampling in DfD+forced on choice proportions for different probabilities, and compares it to DfD.
Panel B directly juxtaposes choice proportions in DfE+forced and DfD+froced. The lines are fitted by linear
regression to the average choice proportions by probability. The error bars indicate ± 1 standard error.

estimations in Online Apppendix E show, subjects furthermore become much more similar

to each other, and the absence of probability-dependence becomes the rule in the data.

To provide a more nuanced picture, and to examine the GAP directly, figure 9 shows

differences in choice proportions between DfD and DfE for all 18 tasks. Panel A shows the

original GAP between DfD and DfE. We use a measure g capturing the difference in choice

proportions, defined so that positive values correspond to behavior typically documented

in the literature for the standard GAP — more risk-taking in DfD than DfE for small

probabilities, more risk taking in DfE than DfD for large probabilities. We then meta-

analytically aggregate the GAP across tasks, which yields an estimate of the overall GAP as

well as correcting for random sampling variation in single tasks (details in Online Appendix

C). In the absence of forced sampling, the GAP is significant in 12 out of 18 tasks when

looking at the raw choice proportions, and in 13 out of 18 tasks in the meta-analytic

posterior.26 At 15.7 percentage points (pp), with a 95% credible interval of [9.7 , 21.8] pp,

the GAP is significant and large measured against the meta-analytic average reported by

Wulff et al. (2018), which comes to book at 9.7 pp.

Panel B compares description-based and experience-based choice proportions after forced

sampling (DfE+forced vs. DfD+forced), and shows that the GAP disappears in these

treatments. We find no significant gap for any of the 18 choice proportions in the meta-

26The exceptions in which the GAP is not statistically significant at conventional levels are small proba-
bility tasks with c ≥ px.
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Figure 9: Meta-analysis of the GAP
Panel A shows a forest plot of the gap for our standard implementation of DfD versus DfE. Panel B shows a
forest plot of the GAP after forced sampling both from description and from experience. The light blue circles,
labeled ‘calc.’, indicate the raw differences in choice proportions in the data, g. The dark blue triangles, labeled
‘post.’, indicate the inferred posterior parameters, ĝ. The thick, dashed vertical line indicates the meta-analytic
posterior mean, ω, and the shaded rectangle indicates the 95% credible interval around that estimate.

analytic posterior. In the one case in which we see a significant gap in the raw choice

proportions, this gap goes in the opposite direction of the standard GAP. At 0.9 pp (95%

credible interval of [−2.3 , 4.1] pp), the meta-analytic posterior mean is arbitrarily close to 0.

The GAP has closed. Our results thus provide strong evidence that the decision-experience

GAP is a consequence of the two elements we expect forced sampling to remove.

5 Free Sampling from Described Choice Options

Representations of lotteries in DfD are noisy, indicating some natural limit to the precision

with which probabilities can be mentally represented. This raises two intriguing questions:

First, will subjects sample when given fully described options, even when they are not forced
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to do so? Second, if subjects do indeed sample, will the sampling error flip the probability-

dependence in risk-taking to qualitatively resemble the pattern observed in DfE? Assuming

that subjects combine the sampled information — which will inevitably be affected by

error — with the unbiased description, we may indeed expect probability-dependence of

risk-taking to change from negative in DfD to positive in DfD+free.

In the DfD+free treatment, we show subjects the same information about lotteries as we

do in the DfD treatment, but we also provide subjects the sampling tools just like in the

DfD+forced treatment. Other than in DfD+forced, however, the radio buttons to indicate

a choice appear from the very start. Subjects are told explicitly that they can sample if they

want to but that they do not have to, and that they can also indicate their decision directly

without sampling. We ran this treatment on Prolific with 101 subjects using otherwise

identical tasks and procedures as in DfD.

We do indeed observe that subjects sample when given the chance to do so, suggesting

at least partial awareness of coding noise in DfD. Across subjects and tasks, the average

number of samples is 1.74, of which 1.4 are taken from the risky option. Only 8 out of 100

subjects never sample at all, but most subjects take relatively few samples. Samples are

highest at the beginning, with 4.7 samples being taken on average across all subjects in

the first round. This declines rapidly to some 2.9 samples on average in the second round,

and to 2.4 in the third. After round 8, the average settles to a steady level of 1.3 samples

per task and subject. The fact that DMs do sample fully redundant information seems

remarkable in our context, given the high opportunity costs of subjects on Prolific.
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Figure 10: Structural estimates, DfD versus DfE
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We next examine what happens to choice behavior once free sampling is introduced. Our

model raises an intriguing question: may free sampling in DfD introduce sampling error

into DfD? The question arises simply because, although subjects are given an objective

description of the probabilities, our model suggests that actual samples drawn are combined

with the unbiased neural samples representing the evidence in favor and against the lottery.

Small samples, however, will suffer from the same issues we have seen in DfE: they will tend

to under-estimate the likelihood of observing the rare event, so that our model predicts that

they will yield biased updates of the true log-odds.

Figure 10 shows the raw choice proportions in DfD+free, and directly juxtaposes them

with the choice proportions in DfD and in DfE. The difference from DfD is very large,

with somewhat less risk-taking for small probabilities, and much more risk-taking for large

probabilities. This results in a positive dependence of choice proportions on the probability

of winning, with a slope of 0.174, and a 95% credible interval of [0.141 , 0.241]. This suggests

that sampling error indeed affects DfD+free choices, just like predicted by our model. The

effect is indeed strong enough to considerably narrow the GAP in the opposite direction

when examining it meta-analytically: at 3.5 pp, the average GAP is now small, and (just)

not statistically significant, with a 95% CrI of [−0.001 , 0.072].

The picture is more nuanced when looking at probability-dependence directly. Although

we now see positive probability-dependence of risk-taking in DfD+free, the influence of the

description is strong enough to keep the probability-dependence significantly smaller than

observed under DfE (where we have observed a slope 0.284, with a credible interval of

[0.226 , 0.347]). This shows that samples from description — while affecting probabilities

in the way predicted by our model — are still balanced against the description provided on

the screen, with choices indicating an aggregation of the two types of information.

Our findings are consistent with studies that have investigated the effect of providing feed-

back after payoff-relevant choices under the form of single draws from the chosen option.

Van de Kuilen (2009) studied the effect of feedback provision after risky choices in a prospect

theory framework. He concluded that providing feedback shifted behavior towards linearity

in probability weighting, but could not fully test this proposition due to exclusive focus on

probabilities ≥ 0.5 (see also van de Kuilen & Wakker 2006). Jessup et al. (2008) and Ty-

mula et al. (2023), who use both monkeys and humans as subjects, provided feedback after

choices for a large number of trials. While none of these studies focuses on the GAP, they

show that classic probability-dependence in DfD reverses upon the provision of feedback,
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resulting in the type of positive probability-dependence observed in DfE.

Our model sheds new light on these findings: unless independently and identically dis-

tributed samples are extremely large, they will introduce sampling error into DfD. The

reason this happens lies in the imprecision in the mental representations of probability that

are explicitly described: the residual uncertainty in their mental representations provides

opportunities for additional information to affect those representations. The feat of closing

the GAP with DfE by acting on DfD is remarkable inasmuch it achieves something that

acting on DfE alone has never achieved — it closes the GAP by manipulating one of the

two sides only. Guided by our model, we introduced sampling error into DfD, all the while

keeping precision relatively low due to the few samples added. This dramatically narrows

the GAP when people can sample freely, with DfD+free approaching the type of positive

probability-dependence characteristic of DfE.

6 Discussion

In this paper we show that probability-dependent risk-taking and the description-experience

gap — two key phenomena in the lottery choice literature — are a consequence of the incom-

plete and imprecise ways decision makers perceive and represent information. Reducing the

imprecision of subjects’ beliefs by forcing them to observe redundant information causes

probability-dependence in risk-taking to disappear and closes the description-experience

gap. In addition to shedding significant light on a key mystery in the literature, we believe

there are several broader implications of our findings.

First, our results show the reach of the noisy cognition approach by extending it from

description-based choice to experience-based choice. Noisy cognition thereby organizes a

key paradox under existing descriptive models of chooice — the description experience

gap — showing the added value of the approach over existing models. Our sampling-

based characterization furthermore allows us to present a particularly crisp test of standard

probability-dependence in risk-taking when choice options are described: by forcing subjects

to take large, balanced samples from both choice options, we manage to completely eliminate

probability-dependence in risky choice. This treatment effect is difficult to account for via

alternative explanations that are not similarly rooted in cognitive imprecision. It further

shows that probability-dependence cannot be attributed to preferences, but is purely an

outgrowth of noisy cognition — a conclusion that goes beyond what has been shown in the

previous noisy cognition literature.
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Noisy coding models hypothesize that descriptive failures of benchmark models like ex-

pected utility theory (von Neumann & Morgenstern 1944, Savage 1954) are a consequence,

not of non-standard preferences, but rather of what we have called imprecision in men-

tal representations, driven by limitations in the way the brain encodes information. This

raises the question of what type of behavior a welfare-maximizing policy maker should take

into account. By strongly reducing imprecisions in mental representations, out treatment

interventions reveal mild, probability-independent risk aversion as a candidate for welfare-

relevant preferences.

An important question concerns the real world relevance of the findings we have presented

in this paper. A key insight we provide is that probability-dependence in risk-taking —

if any — will depend on the type of information to which a decision-maker is exposed.

Pure descriptions may well result in probability-dependent risk-taking of the standard type.

Arguably, however, many real world situations will result in frequent feedback under the

form of identically and independently distributed samples, which could induce the opposite

type of probability dependence. Many important questions — such as the extent to which

some salient events may be more important than less salient events in determining mental

probability representations — remain wide open at this point. Finding answers to such

questions will prove essential to finding explanations for real-world phenomena, such as

lottery play and insurance uptake.
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A Model derivation

A.1 A general inference model

In Decisions from Experience (DfE), subjects need not only learn the outcomes and under-

lying probabilities, but also the whole structure of the decision problem (i.e., the number of

outcomes in the lottery’s support). In the body of the paper we assume away this compo-

nent of the inference problem for simplicity and to focus our discussion on the influence of

sampling error and sampling variance. Here, for completeness, we propose a stylized model

of how such higher order learning could take place based on the sort of sampling from the

two options that occurs in DfE. We argue that expanding the model in this way has little

qualitative impact on our findings.

We start by discussing the structural inference process. Assume a DM believes that out-

comes will range from 0 to some upper limit u, outcomes beyond which are not considered

plausible.27 Take two objective probability distributions over all outcomes underlying the

two choice options, {p0, p1, ..., pu} and {q0, q1, ..., qu}, where subscripts indicate monetary

outcomes. In DfE, DMs will infer the probability distributions from the draws they observe.

Let the initial likelihood at time t = 0, before any draws are taken, be encoded in two u+1-

dimensional Dirichlet distributions, DA(πj) ∝
∏u

j=0 p̃j
πj−1 and DB(ωj) ∝

∏u
j=0 q̃j

ωj−1,

where p̃i ≜
πi∑
j πj

and q̃i ≜
ωi∑
j ωj

represent the subjective expectations of the probabilities

attributed to an outcome i in the two choice options A and B. Given the ex ante exchange-

ability of the two choice options, the two Dirichlets will have the same parameters at time

t = 0 . We assume that DMs consider any given outcome as equally likely in the two choice

options, so that πi = ωi ∀ i at t = 0. This assumption directly follows from the exchange-

ability of the two options before any draws have been observed, and is implemented in our

experiment by randomizing the risky and safe options in positions A and B.

We assume that what matters for decisions is the direct comparison between the two choice

options. To capture this in our model, we map the inferences based on the Dirichlets

encoding draws from the two choice options into a comparative Dirichlet which entails a

statewise comparison between to two options. That is, what matters for choices are events

in which one option pays a given outcome, while the other option pays a different outcome.

In our experiment, these will be the events under which the risky option pays x while the

27In principle, u can take any value, as long as it is finite. In our experiment, we tell subjects beforehand
that all outcomes will range between $0 and $ 35 inclusive, thus setting their expectations about this range.
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safe option pays c < x, and the event under which the risky option pays y while the safe

option pays c > y (see below for a generalization). The probabilities of the comparative

events e1 (obtain x > c rather than c) and e2 (obtain c rather than y < c) can now be

obtained from the single-state Dirichlets DA(πj) and DB(ωj) defined for the two options,

since P [e1] = P [x ∩ c] = p̃x × p̃c and P [e2] = P [y ∩ c] = p̃y × p̃c. Given that for finite

samples p̃c < 1 and p̃x + p̃y < 1, the inferred probabilities will generally be subadditive,

that is, P [e1] + P [e2] ≤ 1 (with 1 being the limiting case as samples tend to infinity). This

implies that we can express the subjective beliefs in the comparative states of the world

once again by a Dirichlet, D(δi) =
∏u

i=1 P [ei]
λδ̂i−1, where λ ≜

∑u
i=1 δi is the concentration

of the new Dirichlet, and δ̂i ≜ δi/λ captures the mean belief about a given state i. While

some probability mass will thus remain attributed to ‘non-observed outcomes’, this part

will drop out of the main choice equation below.

This justifies the assumption of the Beta distribution in the main text: while the latter

imposes additivity in p̂x and p̂y, that assumption serves to simplify our discussion, but has

no substantive implications for our conclusions (given that the non-observed states receiving

the remaining probability mass drop out of the discriminability equation). If, say, a third

outcome from the risky option were to be observed at some point, this would add a new

comparative state to the comparison (see below). In the text we further discussed inference

bias in terms of the samples taken from the risky option only. More generally, however, the

samples from the safe option will also count. While a precise closed-form solution does not

exist for that case, we can approximate the samples by the total samples for each state,

where the samples from the safe option are simply added to the samples indicating each

comparative sample in the sum of the trigamma functions. This means that our discussion

in the main text may quantitatively underestimate the samples, but that this more general

case will not qualitatively affect any of the conclusions drawn.

In the main text, we implicitly assume that subjects know which of the two options is

the risky one and which the safe. In reality, subjects need to infer this from the samples

they take. We make three assumptions in this regard. The first, and most substantively

relevant, is that subjects make inferences on the choice environment (including potentially

the intentions of the experimenter). This entails that choices between two non-degenerate

options are deemed extremely unlikely. Practically, this entails that sampling variance will

remain high until a plausible set of outcomes has been observed.28 The second assumption

28This assumption seems particularly defensible in our DfE experiments, since all subjects assigned to this
treatment have all finished making dozens of binary DfD choices for lotteries with one degenerate and one
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is that we assume the initial parameters of the two choice option Dirichlets to be sparse,

i.e. πi, ωi ≪ 1 ∀ i. This assumption implies that subjects do not expect a very diffuse

probability distribution with many different outcomes. Practically, this helps explain why

samples are relatively small, since it keeps the probability mass assigned to unobserved

outcomes low in the comparative Dirichlet.

An additional assumption in the main text is that subjects can infer which of the two options

is the risky one. This obtains trivially once a subject has observed all three outcomes used in

our experiment (the two in the risky option, and the one in the safe option, which constitute

a ‘plausible minimal outcome set’ inasmuch as they indicate a non-degenerate choice, or

equivalently, they map into two comparative states with a meaningful tradeoff between log-

odds and log-cost benefits). This indeed follows directly from the two assumptions above:

that subjects expect non-degenerate choices, and that the initial parameters are sparse

(meaning that they do not necessarily expect more outcomes once they have observed a

plausible outcome set). The inference is somewhat less trivial as long as only one outcome

has been observed from each choice option.

We illustrate this based on the choice options we provide in the experiment. For small

probabilities, subjects are overwhelmingly likely to observe the lower outcome y. Given that

in our experiment y is always equal to 0, and that we tell subjects that they will only ever face

non-negative amounts, this immediately identifies this choice option as the risky one. For

large probabilities, where subjects may observe two strictly positive amounts x and c from

the two options, this is less obvious. We thus furthermore assume that the parameters of

the option-specific Dirichlets before any samples are taken will be characterized by sparsity

increasing in outcomes. That is, for any j > i, where the two indices are non-negative

outcomes, ωj = πj ≤ πi = ωj at time t = 0, before any samples have been taken. In practice,

this entails that subjects consider smaller outcomes more likely than larger outcomes. Notice

that this is the equivalent of a pessimistic prior for the inference process, and that it is thus

fully coherent with both our model and our empirical results.29

non-degenerate lottery.
29In principle, this inference process could be modelled as a probabilistic process resulting in stochastic

assessments of the riskiness of the two choice options after each sample. Such a model would follow a very
similar structure as our discriminability model, and we do thus not formalize it here. Such a model would
be most relevant for large probability lotteries in cases where only one outcome has been observed from
each option. The notion that subjects infer the structure of such choice problems from sampling draws is
indeed supported by the observation that samples from the safe option increase in the objective probability
of winning for both risk averse and risk seeking subjects in our data.
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A.2 Noisy log-odds representation

In our actual experiment, subjects will experience exactly 1 outcome from the sure option,

and no more than 2 from the risky option. We can thus use the 2-dimensional special case

of the comparative Dirichlet distribution discussed above – the Beta distribution (see above

for an explicit discussion of this simplifying assumption). In particular, the parameter α

will encode the ‘good state’, in which the lottery pays a prize x > c, whereas β will encode

the ‘bad state’, under which the lottery pays an outcome y < c. The perceived or sampled

probability of the good state favoring the lottery will thus be E[p̂] = α
α+β .

We start from an optimal choice rule entailing expected value maximization. The DM will

thus choose the lottery over the sure amount whenever p̂x + (1 − p̂)y > c, or equivalently

whenever

ln

(
p̂

1− p̂

)
> ln

(
c− y

x− c

)
.

The transformation into log-odd space is convenient for computational reasons, but oth-

erwise inconsequential (see Vieider 2024b, for an alternative derivation). The choice rule

entails that the log-odds in favor of the lottery will be traded off against the log of the ratio

of costs (c−y, potentially get the lower outcome y when c could have been had) and benefits

(x−c; obtain the prize x instead of the lower sure amount c). Here, we will assume without

loss of generality that the log cost-benefits are perceived objectively. This is a simplifying

assumption that allows us to focus on the likelihood dimension, where most of the action

takes place. It is straightforward to generalize the derivation to include the noisy coding of

costs and benefits as well (cfr. Vieider 2024b).

The mean of the sampled log-odds can simply be derived from the two parameters containing

the counts of successes and failures:

E
[
ln

(
p̂

1− p̂

)]
= ln

(
α

β

)
Given limited samples, however, even samples that are accurate on average will contain

some error on single draws, driven by natural sampling variation around the true mean.

Averaging across all probabilities, we will thus observe

ln

(
α

β

)
= ln

(
p

1− p

)
+ ε,

which, following Atchison & Shen (1980), could equivalently be written as the difference of
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the digamma functions of the two parameters, 𭟋(α)−𭟋(β).

Log-odds tend to follow approximately normal distributions, giving rise to a logit-normal

(Atchison & Shen 1980). This suggests that ε ∼ N (0, ν2). The sampling variance ν2, in

turn, again derives from the properties of the logit-normal distribution, and is given by the

sum of trigamma functions of the two parameters, i.e. ν2 = 𭟋′(α) +𭟋′(β).

Optimal Combination with Bayesian prior

Given the noise in inferences, it will be optimal to combine the observations with a Bayesian

prior. The optimality of this operation derives from the fact that — even though it will

introduce systematic bias into the estimates under the form of regression to the mean of

the prior — it will minimize the mean squared error across many estimates (see Ma et al.

2023, chapter 4, for an illustration). The reason for this is that the reduction in variance

of the estimator will more than make up for the introduction of bias.

The objective for the mind now becomes to infer the log-odds from the underlying samples

(whether they be true samples or virtual/neural samples — we drop the subscripts here

and derive the equation just once). The inference problem for any given choice task will

thus be as follows:

E
[
ln

(
p

1− p

) ∣∣α, β] =
σ2

σ2 + ν2
ln

(
α

β

)
+

ν2

σ2 + ν2
µ,

where we redefine µ = ln
(

p0
1−p0

)
in the main text, and where the Baysian evidence weight

or “likelihood-discriminability” parameter is given by γ ≜ σ2

σ2+ν2
= 1

1+ν2/σ2
. A step-by-step

derivation of this equation can be found in Vieider (2024a), chapter 2.

In DfD, the “virtual draws” encoded in α and β (referred to as α̂ and β̂ in the main text)

are unobservable. We can, however, estimate the equation by aggregating across multiple

similar probabilities. This will yield the expectation over repeated stimuli of the posterior

expectation above, which takes the following form:

E
[
E
[
ln

(
p

1− p

) ∣∣ α̂
β̂

] ∣∣ p] =
σ2

σ2 + ν2
ln

(
p

1− p

)
+

ν2

σ2 + ν2
µ,

which now allows us to substitute the true log-odds for the sampled log-odds. Choice to

choice fluctuations in the samples will be reflected in the variance of the distribution, which
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takes the form γ2ν2 = σ4ν2

(σ2+ν2)2
.

Proof. The proof exploits the well-known property of the normal distribution whereby z ∼
N (ẑ, τ2) implies bz + a ∼ N (bẑ + a, b2τ2). To obtain the response distribution above, let

ln
(
α
β

)
= z, σ2

σ2+ν2
= b, ν2

σ2+ν2
µ = b, ln

(
p

1−p

)
= ẑ, and ν = τ .

Note that the problem does not change in any substantive way if we abandon the assumption

of draws correctly reflecting the underlying distribution on average when real samples are

taken in DfE. We then simply change the objective probability p to the sampled probability

p̂ in the equations above. Sampling bias in p̂ will then occur on top of the inference bias,

which still results in regression to the mean of the prior, just like represented above.

Stochastic choice rule

We can now trade off the inferred log-odds, as derived above, against the log-cost benefits, as

suggested by our optimal choice rule. Letting µ ≜ ln
(

p0
1−p0

)
, we obtain δ = ln

(
p0

1−p0

)1−γ
,

and by extension, θ = δ−1 = ln(1−p0
p0

)1−γ . Putting everything on the scale of the standard

deviation of the response distribution derived in the previous section yields the z-score

describing the choice probability of the lottery:

pr[(x, p; y) ≻ c] = Φ

γ ln
(

p
1−p

)
− ln

(
c−y
x−c

)
− ln(θ)

γ ν

 ,
where Φ is the standard normal cumulative distribution function. In DfD (as well as

DfD+forced and DfE+forced), the probability will correspond to the correct one, and the

model can thus be simply estimated on choice data by plugging the probit link function

above into a Bernuoulli distribution (see below).

In DfE, we need to slightly amend the function above. In particular, we will now substitute

sampled probabilities p̂ for the true probabilities above (adding a constant to both numerator

and denominator to make sure it is defined—see discussion of the inference process above).

An additional assumption concerns the log cost-benefit ratio when either x , y, or c have

not yet been observed. The simplest assumption is that of a “naive” decision maker, who

assumes the ratio to be 1 in that case (and hence its logarithm to be 0). However, this

is just a special case of what a more sophisticated decision maker would do. Multiplying

the log cost-benefit ratio by an additional parameter ρ, conditional on one of the outcomes
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not yet having been observed, allows for a more flexible specification whereby the DMs can

(correctly) infer a positive correlation between log-odds and log cost-benefits. The “naive”

DM discussed above is then just a special case for whom ρ = 0.

N-dimensional generalization

The inference framework discussed at the beginning of this section is fully general. While we

have described it for the particular case of comparisons used in our experiment, it can just as

easily be applied to comparison between multi-outcome lotteries. The inference framework

introduced above remains directly applicable, with the two option-specific Dirichlet simply

counting instances of different outcomes. Our setup assumes that outcomes are ordered by

size to arrive at the comparative distribution. The comparative Dirichlet is then constructed

over k comparative states constructed based on the ranked outcomes.

Take two lotteries offering outcomes xxx = {x1, ..., xk} and yyy = {y1, ..., yk} under the com-

parative events e1, ..., ek, where each comparative event is characterized by a probability

p̂i, which could be different from the true underlying probability pi. We assume that the

outcome are ordered such that x1 ≥ x2 ≥ ... ≥ xk and y1 ≥ y2 ≥ ... ≥ yk. We further

assume for our representation that xxx is riskier than yyy in the sense of having wider spread

or variance. Draws from the two choice options ought to be seen as independent, just as

is the case in the actual samples taken. The optimal choice rule, which once again entails

expected value maximization, takes the following form:

k∑
i=1

p̂i
1− p̂i

(xi − yi) > 1, (5)

which sums the relative benefits of the riskier option, xi − yi.

Assuming that the different states will be processed in parallel, the stochastic choice equa-

tion then takes the following form:

P [xxx ≻ yyy] =

k∑
i=1

Φ

γ × ln
(

p̂i
1−p̂i]

)
+ 1× ln (1(xi − yi))− ln(θ)

(k − 1) ν × γ

 .
where 1 = 1 if xi−yi > 0 and else 1 = −1, thus assuring that the logarithm is defined. The

multiplication of the “relative benefit” by 1 further makes sure that this quantity enters with

the appropriate sign, since it could favor either choice option in any given state i. Given
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that any single comparison is standard-normally distributed, the sum over the different

comparisons will also follow a standard normal distribution. While this formulation could,

in principle, result in predicted choice probabilities greater than 1 or smaller than 0, this

is unlikely in practice, given that benefits and costs are usually designed to compensate

each other. A regularizing condition could be imposed to overcome this issue should it ever

become relevant in practice. We lave careful study of this extension for future work.

B Experiments

Choice stimuli

We selected our choice stimuli from those in the early DfE literature (Hertwig et al. 2004),

but generalized them so as to allow us to structurally estimate our model, and to obtain a

more balanced picture of the behavior. We assured identification of the structural estima-

tions using simulations, which allowed us to find the optimal compromise between number

and type of task and the length of the experiment. The limiting factor derived in particular

from the forced sampling experiments, where subjects had to take 40 samples by tasks, as

well as expressing their final choice.

We thus chose 6 different lotteries—3 with a small probability, and 3 with a large probability

of winning. We then obtained three choice tasks by lottery by setting the sure amount c

equal to the expected value, and by adding or subtracting a fixed amount. This provides

some valuable variation for the structural estimations, and results in the following 18 unique

tasks (4 randomly selected ones of which were repeated in the experiment):

C Meta-analytic estimation

Quantifying the GAP. To get a better idea of the size of the decision-experience GAP in

our data, and to relate it to typical findings in the literature, we can aggregate the evidence

across tasks using the tools of meta-analysis.30 Let πd = Rd/Nd be the proportion of risky

choices in DfD, where Rd is the number of risky choices, and Nd the number of observations.

30The meta-analytic tools we use are identical to a “measurement error model”. That is, the assumption
is that each single choice proportion is observed with some error. Meta-analysis then allows us to aggregate
across the choice proportions while eliminating measurement error and thus correcting our analysis for
multiple testing across many moderate (and not statistically independent) samples.
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Table 3: Choice tasks

small p large p

(31,0.10) vs. 2.8 (4,0.80) vs. 3.0
(31,0.10) vs. 3.2 (4,0.80) vs. 3.2
(31,0.10) vs. 3.6 (4,0.80) vs. 3.4
(10,0.15) vs. 1.2 (8,0.85) vs. 6.6
(10,0.15) vs. 1.5 (8,0.85) vs. 6.8
(10,0.15) vs. 1.8 (8,0.85) vs. 7.0
(16,0.20) vs. 2.9 (10,0.90) vs. 8.8
(16,0.20) vs. 3.2 (10,0.90) vs. 9.0
(16,0.20) vs. 3.5 (10,0.90) vs. 9.2

Choice tasks are describes as usual, with (x, p) designating a lottery providing a prize x
with probability p or else 0, and c designating the sure amount.

Let πe = Re/Ne be the proportion in DfE. We define the difference in choice proportions as

g, where we encode the difference in the direction of the standard gap, so that g = πd − πe

for p < 0.5 and g = πe − πd for p > 0.5. This difference will be approximately normally

distributed, with variance π(1− π) (1/Nd + 1/Ne), where π = πd+πe

Nd+Ne
. We can now use g and

its associated standard error, se, for meta-analytic aggregation across tasks, indexed by i:

gi ∼ N ( ĝi , se
2
i )

ĝi ∼ N (ω , τ2 ),

where g and se are data, ĝ is the unknown true effect, and ω and τ are parameters capturing

the meta-analytic mean and standard deviation across tasks, respectively. We then quantify

the GAP by meta-analytically aggregating the differences in choice proportions across tasks

in a direction that is consistent with the standard GAP.

Reversals in Likelihood Dependence. We can also use meta-analysis to test whether

choice proportions exhibit probability-dependence, and whether the nature of this de-

pendence is different in DfE and DfD. To do this, we analyze the choice proportions πi

directly (instead of examining differences in choice proportions gi) so that we estimate

πi ∼ N ( π̂i , sei ). We then use meta-regression to assess the dependence of the choice pro-

portions on the probability of winning, by letting π̂i ∼ N (λ0 + λ× pi , τ
2 ), where π̂i is the

unknown true choice proportion.

We estimate the model in Stan (see Vieider 2024a for a tutorial on the use of Stan for

decision models; chapter 4 contains a part specifically dedicated to meta-analysis). Here is
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the Stan code used to estimate the model:

//footnotesize

data{
int<lower=1> N; \\number o f obse rvat i on

vec to r [N] gap ; \\ d i f f e r e n c e in cho i c e propor t i on s

vector<lower=0>[N] se ; \\ standard e r r o r o f the d i f f e r e n c e

}
parameters {

vec to r [N] gamma; // true , est imated gap ( c a l l e d g hat in paper )

r e a l mu; //meta−ana l y t i c mean (omega in paper )

r ea l<lower=0> sigma ; // var iance

}
model{
// r e g u l a r i z i n g p r i o r s

sigma ˜ normal ( 0 , 1 ) ;

mu ˜ normal ( 0 , 1 ) ;

// measurement e r r o r model :

gap ˜ normal ( gamma , se ) ;

// l i k e l i h o o d :

gamma ˜ normal ( mu , sigma ) ;

}

The meta-regression is introduced into the same code simply by modifying the mean mu,

making it dependent on the probability of winning:

//footnotesize

data{
int<lower=1> N;

int<lower=1> K; // dimension o f des ign matrix

vec to r [N] gap ;

vector<lower=0>[N] se ;

matrix [N,K] X; // des ign matrix o f exp lanatory v a r i a b l e s

}
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parameters {
vec to r [N] gamma;

r e a l mu;

r ea l<lower=0> sigma ;

vec to r [K] beta ;

}
model{

sigma ˜ normal ( 0 , 1 ) ;

mu ˜ normal ( 0 , 1 ) ;

// measurement e r r o r model :

gap ˜ normal ( gamma , se ) ;

// l i k e l i h o o d :

gamma ˜ normal ( mu + X ∗ beta , sigma ) ;

}

}

D Structural estimation

We implement our structural equations based on the discriminability equation in the main

text, using the objective probability of winning, p, in DfD, DfD+forced, and DfE+forced.

We use the sampled probability ln
(
α
β

)
in DfE, and complement this with an assumption

about the log-cost benefits in the case that one of the outcomes has not yet been observed

when the decision is taken, as described above.

We keep the model as simple as possible in order to maximize our comparative power and

to keep the model parsimonious. This means, first of all, that we normalize the coding noise

variance by division with the variance of the prior, so that γ = 1

1+ ν2

σ2

. This helps both iden-

tifiability and comparability across treatments but happens without loss of generality, since

it is the ratio between coding noise variance and prior variance that determines behavior

(see also Natenzon 2019). Another assumption that we maintain throughout the paper is

that the mean of the prior, µ, remains unaffected over the course of the experiment. We

exploit this in the estimation by letting µ be the same across the 2 parts of the experiment,
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whereas ν and as a consequence γ and θ are all allowed to vary freely.

We estimate the model using a Bayesian hierarchical setting in Stan (Carpenter et al. 2017).

The hierarchical setting allows us to pool information from the aggregate estimation, which

provides the priors, and from individual-level parameter estimates, which contribute to

the aggregate in proportion to their precision. The aggregation equation follows exactly

the equation we describe for our Bayesian inference process. Vieider (2024a) provides a

step-by-step tutorial on the estimation of decision models in Stan.

Below, we include an commented version of the code we use in DfD, DfD+forced, and

DfE+forced (the code used in DfE is very similar, and only has an additional parameter ρ, as

well as including the truly observed log-odds as data; it is available upon request). We define

the variables at the level of the individual choices. This allows us to implement a literal

specification of our model, where task-specific quantities are encoded by parameters α and

β. These parameters are nested in individual-level parameters, which we use to fit the choice

data, and which ensures that the choice-level parameters are identified and well-behaved

(since the individual-level parameters act as informative priors). Finally, individual-level

parameters are nested within an overall distribution.

We check convergence by making sure that all R-hats are below 1.05. We also carefully

check that any divergent iterations do not indicate problems with the posterior (and discard

all estimates with more than 1% divergent iterations). The hyperpriors on the aggregate

parameter means are given very wide priors, which makes them mildly regularizing—they

help the convergence of the simulation algorithm by being centered around the region where

we expect the parameter values to fall, but they attribute significant probabilitry mass to

1 order of magnitude above the region into which we would expect the parameters to

reasonably fall. Our estimates are indeed not sensitive to the choice of the exact parameter

values. This follows best practices in Bayesian estimation.

data{ \\ de c l a r e data

int<lower=1> N; \\number o f ob s e rva t i on s

int<lower=1> N id ; \\number o f s ub j e c t s

array [N] i n t id ; \\unique i d e n t i f i e r

array [N] r e a l high ; \\outcome x

array [N] r e a l low ; \\outcome y

array [N] r e a l sure ; \\outcome c

array [N] r e a l p ; \\ p r obab i l i t y
array [N] i n t c h o i c e r i s k y ;\\ cho i c e : 1 i f r i s k y

array [N] i n t part2 ; \\dummy to i nd i c a t e part 2
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}
transformed data{
array [N] r e a l l cb ; \\ l og co s t b e n e f i t r a t i o

array [N] r e a l l l r ; \\ log−odds

f o r ( i in 1 :N){
l cb [ i ] = log ( ( sure [ i ] − low [ i ] ) / ( high [ i ] − sure [ i ] ) ) ;

l l r [ i ] = log ( p [ i ] / ( 1 − p [ i ] ) ) ;

}
}
parameters {

vec to r [ 3 ] means ; \\ aggregate mean parameters on log s c a l e

vector<lower=0>[3] t au id ; \\ aggregate parameter va r i ance s

c h o l e s k y f a c t o r c o r r [ 3 ] L omega id ; \\decomposed covar matrix

array [ N id ] vec to r [ 3 ] Zid ; \\ stan dard ized ind iv idua l−l e v e l parameters

}
transformed parameters {
// covar and temp parameters

matrix [ 3 , 3 ] Rho id = L omega id ∗ L omega id ’ ; \\ obta in covar iance matrix

array [N] vec to r [ 3 ] pars ; \\parameter matrix on log s c a l e

// gene ra t i v e parameters :

vec to r [N] mu; \\ p r i o r mean

vector<lower=0>[N] kappa ; \\ concent ra t i on part1

vector<lower=0>[N] kappaf ; \\ concent ra t i on part2

// der ived parameters from here

vec to r [N] alpha ; \\ der ived parameters−−s ee d e f i n i t i o n s in text , and below

vec to r [N] beta ;

vec to r [N] nu ;

vec to r [N] gamma;

vec to r [N] theta ;

vec to r [N] omega ;

vec to r [N] a lpha f ;

vec to r [N] be ta f ;

vec to r [N] nuf ;

vec to r [N] gammaf ;

vec to r [N] t h e t a f ;

vec to r [N] omegaf ;

f o r ( i in 1 :N){
pars [ i ] = means + d i ag p r e mu l t i p l y ( tau id , L omega id ) ∗ Zid [ id [ i ] ] ;

mu[ i ] = pars [ i , 1 ] ;

kappa [ i ] = exp ( pars [ i , 2 ] ) ;

kappaf [ i ] = exp ( pars [ i , 3 ] ) ;

// d e f i n e der ived parameters

alpha [ i ] = kappa [ i ] ∗ p [ i ] ;
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beta [ i ] = kappa [ i ] ∗ (1 − p [ i ] ) ;

nu [ i ] = sq r t ( trigamma ( alpha [ i ] ) + trigamma ( beta [ i ] ) ) ;

gamma[ i ] = 1/( 1 + nu [ i ] ˆ2 ) ;

theta [ i ] = exp ( ( gamma[ i ] − 1) ∗ mu[ i ] ) ;

omega [ i ] = nu [ i ] ∗ gamma[ i ] ;

a lpha f [ i ] = kappaf [ i ] ∗ p [ i ] ;

b e ta f [ i ] = kappaf [ i ] ∗ (1 − p [ i ] ) ;

nuf [ i ] = sq r t ( trigamma ( a lpha f [ i ] ) + trigamma ( be ta f [ i ] ) ) ;

gammaf [ i ] = 1/( 1 + nuf [ i ] ˆ2 ) ;

t h e t a f [ i ] = exp ( ( gammaf [ i ] − 1) ∗ mu[ i ] ) ;

omegaf [ i ] = nuf [ i ] ∗ gammaf [ i ] ;

}
}
model{

vec to r [N] u d i f f ; \\ l o c a l vec to r

\\ p r i o r s f o r aggregate ( h i e r a r c h i c a l ) parameters

t au id ˜ exponent i a l ( 5 ) ;

L omega id ˜ l k j c o r r c h o l e s k y ( 4 ) ;

means [ 1 ] ˜ normal (0 , 5 ) ;

means [ 2 ] ˜ normal (0 , 5 ) ;

means [ 3 ] ˜ normal (0 , 5 ) ;

\\ p r i o r s f o r i nd i v i dua l l e v e l parameters , s tandard i zed :

f o r (n in 1 : N id )

Zid [ n ] ˜ std normal ( ) ;

\\ the mode :

f o r ( i in 1 :N ) {
ud i f f [ i ] = ( ( gamma[ i ] ∗ l l r [ i ] − l cb [ i ] − l og ( theta [ i ] ) )/ omega [ i ] ) ∗ (1 − part2 [ i ] ) +

( ( gammaf [ i ] ∗ l l r [ i ] − l cb [ i ] − l og ( t h e t a f [ i ] ) )/ omegaf [ i ] ) ∗ part2 [ i ] ;

c h o i c e r i s k y [ i ] ˜ b e r n ou l l i ( Phi ( u d i f f [ i ] ) ) ;

}
}
\\ code below r e cove r s i nd iv idua l−l e v e l parameters

generated quan t i t i e s {
vec to r [N] l o g l i k ;

vec to r [N] u d i f f ;

v ec to r [ N id ] mun;

vec to r [ N id ] kappan ;

vec to r [ N id ] alphan ;

vec to r [ N id ] betan ;

vec to r [ N id ] nun ;
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vec to r [ N id ] gamman ;

vec to r [ N id ] thetan ;

vec to r [ N id ] kappafn ;

vec to r [ N id ] a lphafn ;

vec to r [ N id ] beta fn ;

vec to r [ N id ] nufn ;

vec to r [ N id ] gammafn ;

vec to r [ N id ] the ta fn ;

vec to r [ 3 ] temp ;

f o r (n in 1 : N id ){
temp = means + d i ag p r e mu l t i p l y ( tau id , L omega id ) ∗ Zid [ n ] ;

mun[ n ] = temp [ 1 ] ;

kappan [ n ] = exp ( temp [ 2 ] ) ;

kappafn [ n ] = exp ( temp [ 3 ] ) ;

alphan [ n ] = kappan [ n ] / 2 ;

betan [ n ] = kappan [ n ] / 2 ;

nun [ n ] = sq r t ( trigamma ( alphan [ n ] ) + trigamma ( betan [ n ] ) ) ;

gamman [ n ] = 1/(1 + nun [ n ]ˆ2 ) ;

thetan [ n ] = exp ( ( gamman [ n ] − 1 ) ∗ mun[ n ] ) ;

a lphafn [ n ] = kappafn [ n ] / 2 ;

beta fn [ n ] = kappafn [ n ] / 2 ;

nufn [ n ] = sq r t ( trigamma ( a lphafn [ n ] ) + trigamma ( beta fn [ n ] ) ) ;

gammafn [ n ] = 1/(1 + nufn [ n ]ˆ2 ) ;

the ta fn [ n ] = exp ( ( gammafn [ n ] − 1 ) ∗ mun[ n ] ) ;

}

f o r ( i in 1 :N ) {
ud i f f [ i ] = ( ( gamma[ i ] ∗ l l r [ i ] − l cb [ i ] − l og ( theta [ i ] ) )/ omega [ i ] ) ∗ (1 − comp [ i ] ) +

( ( gammaf [ i ] ∗ l l r [ i ] − l cb [ i ] − l og ( t h e t a f [ i ] ) )/ omegaf [ i ] ) ∗ comp [ i ] ;

l o g l i k [ i ] = b e rnou l l i l pm f ( c h o i c e r i s k y [ i ] | Phi approx ( u d i f f [ i ] ) ) ;

}
}

D.1 Structural estimation results

We use structural estimation to more deeply assess the hypothesis that both probability-

dependence and the description-experience gap are a consequence of cognitive noise — and

that our treatments eliminate these patterns by eliminating this noise. We structurally

estimate our model from choice data based on our discriminability equation (4). The key
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parameter driving both probability-dependence and the GAP in our model (and, therefore,

our focus in this section) is γ, the weight the DM puts on her perception of the log-odds

in the decision process. We will refer to this as “likelihood-discriminability,” mirroring the

name given the equivalent parameter in the LLO function, “likelihood-sensitivity.” In the

model, γ is an inverse function of coding noise: the smaller coding noise ν becomes, the

closer γ will come to 1, producing perfect discriminability of log-odds. Importantly, this

parameter is estimated, in part, using inconsistencies in subjects’ choices across repeated

instances of the same task (recall, four random tasks were repeated for each subject) which

give us direct, subject-level measures of behavioral noise. This analysis therefore relies on

new data, not reported in the previous analysis.

We estimate the model using Bayesian hierarchical techniques, which optimally combine

individual-level information with group-level evidence (Gelman et al. 2014). This allows us

to study distributions of individual-level parameters based on relatively few decision tasks

(details and code are provided in Online Appendix E). We normalize the variance of the

prior to σ = 1 throughout, so that sampling variance is measured relative to the variance of

the prior, ν/σ. This is done without loss of generality and to improve comparability across

studies, simply leading to a rescaling of the equation (see Natenzon 2019 for an equiv-

alent simplification).31 We execute tests on distributional differences and correlations in

individual-level parameters based on the means of the individual-level posteriors through-

out. All comparisons are within-subject, leveraging our two stage design, unless specified

otherwise. We report four main findings:

First, we find that, conditional on the information subjects have about probabilities, esti-

mates of γ indicate strong (and similar) levels of sampling variance in DfD and DfE, with γ

estimates well below the unbiased benchmark of 1. To estimate γ in a way that makes DfE

and DfD estimates comparable, we estimate the model in DfE on the actually experienced

probabilities (i.e., probabilities implied by the sample subjects have drawn), rather than the

lottery’s true probabilities.32 Because of this, we must make an assumption on how subjects

31We estimate the model on choice data while leveraging our within-subject design. That is, we estimate
the model using the data from both treatments, and assuming that the parameters governing the prior
remain the same across the two treatments, while leaving the other model parameters free to vary. This
allows us to maximize the informative content of our sparse choice stimuli. See Online Appendix E for
details.

32We assume throughout that the initial Beta parameters, before any samples are observed, are α = β =
0.1. This assumption derives from our general inference framework, based on a diffuse Dirichlet space – see
Online Appendix A.1 for details. While values smaller than 1 are plausible (they imply that subjects expect
relatively few outcomes in our general inference framework), our results are not sensitive to variations of
this value within that range.
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perceive the log cost-benefit ratio in cases in which the subject fails to sample both lottery

outcomes before making a choice. Panel A in Figure 11 shows the cumulative distribution

function of individual-level γ estimates under the assumption that DMs are “naive” in the

sense that they judge costs and benefits to be equal in such cases. In panel B, we instead

assume DMs are sophisticated in the sense that they realize that larger log-odds imply

larger log cost-benefits; the correlation measuring the degree of sophistication thus must be

estimated as an endogenous parameter (see Online Appendix E for details and additional

results).
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Figure 11: Structural estimates, DfD versus DfE
The figure shows structural estimates of the model parameters. Panel A compares likelihood-discriminability
γ in DfD and DfE for a naive decision maker, who assumes costs and benefits to be equal when one of the
outcomes has not been observed. Panel B compares likelihood-discriminability, γ, for a sophisticated DM, who
(correctly) infers that log-odds and log costs-benefits are correlated in the choice problems. The correlation
coefficient is thereby estimated endogenously from the data (see Online Appendix E for details).

Regardless of the approach taken, two findings stand out from Figure 11. First, in both

DfD and DfE, γ falls well below the unbiased benchmark of 1, suggesting a strong role for

inference bias in both settings as predicted by our model. Second, the distributions of γ

estimates are similar in both DfD and DfE.33 This is important because our model explains

the GAP between these settings not via differences in γ but rather via the very different

effects the model predicts γ has in DfD vs. DfE environments. The results therefore assure

us that the model parsimoniously explains differences in lottery choices across treatments,

conditional on the information available to subjects.

Second, we show that forced sampling in DfD and DfE results in a sharp increase in γ

33For the naive estimates pictured in panel A, likelihood-discriminability γ is somewhat smaller in DfE
than in DfD (p = 0.006). For the sophisticated estimates in panel B, the two distributions produce roughly
equal deviations above and below 0.5, and are not significantly different (p = 0.979).
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Figure 12: Structural estimates, DfD vs DfD+forced and DfE vs DfE+forced
The figure shows structural estimates of likelihood-discriminability γ. Panel A compares likelihood-
discriminability in DfE and DfE+forced. Panel B compares likelihood-discriminability in DfD and DfD+forced.

towards 1 (the unbiased benchmark), suggesting that the intervention influences behavior

(as predicted by the model) by severely reducing sampling variance and with it scope for

sampling error. In panel A and B of Figure 12 respectively we plot CDFs of estimated

individual-level mean γ estimates in DfE34 and DfD with and without forced sampling.35

In both cases, forced sampling causes a sharp rightward shift in the γ parameter, with

medians in both cases of about 0.95 suggesting a near elimination of coding noise and

inference bias.36

Third, we show that forced sampling in DfD and DfE – which, recall, caused a convergence

in behavior between the two treatments – also causes a convergence in γ. This suggests

(as our model predicts) a causal linkage between the two findings: joint convergence of

γ in the two treatments towards 1 (signalling the disappearance of inference bias) causes

lottery choice patterns to converge, suggesting (as predicted by the model) that coding

noise was responsible for their initial divergence. Panel A of Figure 13 directly compares

γ in DfD+forced and DfE+forced. Over most of the distribution, the panel shows that

discriminability converges across the two treatments, suggesting that subjects are similarly

free of inference bias in the two settings – a finding that matches the similar revealed risk

34In DfE we plot estimates that assume subjects make sophisticated inferences about the cost-benefit
ratio, as discussed above.

35For this analysis, we use a between-subject comparison in both cases since DfE vs DfE+forced can only
be compared between subjects; in DfD, replacing this with within-subject comparisons yields very similar
results (cfr. Online Appendix E).

36Estimates also reveal a sharp reduction in cross-subject variance. This too is a prediction of the model,
since the treatment is predicted to have similar impacts on both initially high and low noise subjects.
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aversion in choices in the two settings. Indeed, non-parameteric tests detect no significant

difference between the two distributions (p = 0.376).37
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Figure 13: Effects of forced sampling, Structural estimates
The figure shows structural estimates of the model parameters. Panel A directly compares likelihood-
discriminability γ in DfD+forced and DfE+forced. Panel B compares likelihood-discriminability, γ, in DfD
without and with forced sampling. Panel B plots coding noise in first stage DfD against the change in likelihood-
disciminability when forced sampling is introduced.

Finally, Panel B of Figure 13 illustrates the reason for this effect by plotting coding noise ν

(measured in the DfD choices in Stage 1 of the experiment) against the difference between

γ in DfD and DfD+forced (defined as γ2 − γ1, with subscripts indicating the stage of the

experiment), exploiting our within-subject design. The figure shows clearly that the effect

of sampling is most pronounced for those subjects who had the largest coding noise to begin

with. These results strongly support an additional prediction of the model: that sampling

should have the strongest effect on subjects who have relatively high coding noise to start

with (i.e., relatively small ‘spike counts’ α̂ and β̂). This is a consequence of the fact that

the reduction in coding noise decreases at a decreasing rate with further samples. The

figure thus shows in a particularly sharp way how strong the effect of forced sampling is on

likelihood-discriminability in the DfD treatment.

37Nonetheless, as is clear from the graph, discriminability is somewhat lower in the left hand tail of the
DfE distribution. We hypothesize that this is due to limitations on subjects’ memory, highlighting the value
to subjects of having an explicit description of the outcomes and probabilities on the screen (in DfD+forced)
to guard against inattention and working memory limitations.
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E Additional results

Additional results on free sampling in DfE

Subjects take relatively few samples in our experiment, something that may be explained

by the high opportunity costs faced by subjects on Prolific, who—contrary to students in

lab or classroom settings—can leave as soon as they are done with the experiment and move

on to other earning opportunities. The average number of samples taken is 8, which puts

our study at roughly the first tercile of the distribution summarized in the meta-analysis of

Wulff et al. (2018). Samples taken, however, generally tend to be lower in tasks comparing

lotteries with sure outcomes, as we use here. The average subject on the average task takes

3.3 samples from the safe option, but 4.3 samples from the risky option. However, samples

vary greatly between individuals, ranging from 2 on average (1 per option) to about 40.
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Figure 14: Samples by probability and risk aversion
The figure shows the number of samples taken from the risky option by probability and risk aversion at the task
level resolution in Panel A. Risk aversion is assessed as the proportion of safe choice in the first, DfD part of
the experiment, after removing repeated tasks. The categorization is obtained using a median split. Error bars
show ±1 standard error. Panels B through D show the distribution of sampled probabilities by different actual
probabilities.

Panel A in Figure 5 examines the average samples by probability from the risky option at the

task resolution. The samples are presented following a median split on risk aversion in the

first, description-based, part of the treatment, implemented as the proportion of choices of

the sure amount. This aims to test our model prediction according to which samples should

vary with the underlying probability depending on the initial risk aversion of the DM. These
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predictions are strongly supported by the evidence presented in the figure. Risk averse DMs

take few samples from small-probability lotteries, but sample significantly more from large-

probability lotteries. For the least risk averse half of the sample, we observe a (somewhat

weaker) trend in the opposite direction. This aligns with our prediction, according to which

risk averse DMs should have less of a conflict between noise and sampling bias in small

probability lotteries, thus reaching a decision more quickly.

The small number of samples taken is reflected in the probabilities people experience. This

is illustrated figure 14, panels B through D, which plot distributions of probabilities inferred

from the actual samples a DM observed. For small probability lotteries, subjects experience

a smaller probability than the true one in 66% of cases overall, while getting a correct

picture in some 3.4% of cases. For large probability lotteries this picture is reversed, with

55% of samples over-estimating the true probability, and only 2.2% resulting in a correct

estimate. The asymmetry we see between small and large probabilities suggests that the

larger samples taken for large probabilities result in a more balanced picture.

Nonparametric within-subject results

Here, we replicate the nonparametric between-subject analysis in the paper by presenting

within-subject comparisons wherever this is possible. The descriptions of the figures are

self-contained.
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Figure 15: The GAP: within-subject

Choice proportions by probability for the decision-experience gap: DfD versus DfE. Error bars indicate 1

standard error.
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Figure 16: DfD+forced vs DfD within subject

Choice proportions by probability, within-subject comparison between DfD+forced and DfD. Error bars indicate

1 standard error.

Figures at task level

Here, we show all figures for which we averaged across c at the probability level at a task-

level resolution. The figure descriptioins are self-contained.
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Figure 17: The GAP at the task level (between-subjects)

Choice proportions by task for the decision-experience gap: DfD versus DfE. Error bars indicate 1 standard

error.
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Figure 18: DfE+forced versus DfE at the task level (between-subjects)

Choice proportions by task for DfE+forced compared to DfE. This comparison is only possible between-subjects.

Error bars indicate 1 standard error.
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Figure 19: DfD+forced versus DfD at the task level (between-subjects)

Choice proportions by task for DfD+forced compared to DfD. Error bars indicate 1 standard error.
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Figure 20: DfD+forced versus DfD at the task level (between-subjects)

Choice proportions by task for DfD+forced compared to DfD. Error bars indicate 1 standard error.

Within-subject structural results

This section contains within-subject structural comparisons for those cases where we used

between-subject comparisons in the main text, but within-subject comparisons are possible.

The descriptions of the graphs are self-contained.
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Figure 21: Likelihood-discriminability in DfD vs DfD+forced, within subject

Likelihood-discriminability, γ, empirical cumulative distribution function of individual-level posterior means.

Within-subject comparison between DfD and DfD+forced.

F Instructions to Subjects

F.1 Stage 1 Instructions

Subjects in all treatments, were given the following instructions prior to Stage 1.
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F.2 Stage 2 Instructions

In Stage 2, subjects assigned to the DfD treatment were given the following instructions:

Subjects assigned to DfE or DfE+forced were initially given the following instructions:

Subjects assigned to DfD+forced or DfD+forced were initially given the following instruc-

tions:

After this, subjects in DfE or DfD+free were given the following instructions:
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while subjects in DfE+forced or DfD+forced were instead given the following instructions:

Finally, all subjects were given these instructions prior to the beginning of Stage 2:
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