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Abstract

We provide evidence that “noisy coding” is responsible for both (i) classic probability-
dependence of risk-taking and (ii) its reversal when the properties of lotteries are learned
by sampling rather than by explicit description. Guided by a stylized model of noisy
sampling, we show that simply forcing experimental subjects to sample redundant infor-
mation about the primitives of lotteries causes both types of probability-dependence to
disappear, closing the description-experience gap and resulting in broadly neoclassical
behavior. This strongly suggests that these anomalies are a joint outgrowth of decision
makers’ noisy representations of the primitives of lotteries rather than expressions of

true risk preferences.
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1 Introduction

Risk-taking has been extensively documented to deviate from the predictions of the standard

model of expected utility theory (EUT). A key anomaly identified in the last half century
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consists in systematic probability-dependence of risk-taking. As hundreds of experiments
have shown, experimental subjects, when given explicit descriptions of lotteries, tend to be
more risk-taking for small probabilities and relatively less risk-taking for large probabilities
of winning a prize. This probability-dependence has been enshrined as a centerpiece of
alternatives to EUT such as prospect theory (Kahneman & Tversky 1979, Tversky & Kah-
neman 1992). When subjects are required to discover the properties of lotteries by sampling
from them instead of by reading explicit descriptions of their properties, the direction of
this anomaly reverses: subjects now tend to be highly risk averse for low probabilities, and
risk-taking tends to increase in the probability of winning a prize (Barron & Erev 2003, Her-
twig et al. 2004). This constitutes an important paradox under prevalent EUT-alternatives

such as prospect theory. To date, these two patterns lack a unified theoretical explanation.

Understanding the reversal in the dependence of risk-taking propensities on probabilities
when choice options are described or need to be experienced thus appears as a key ingredient
for understanding what drives risk-taking in general. Experience-based choice has been
largely explained through sampling error (Hertwig et al. 2004, Fox & Hadar 2006, Hertwig &
Pleskac 2010), but removing sampling error has failed to eliminate the gap (Hau et al. 2008,
Ungemach et al. 2009). Here, we propose a unified explanation of opposite probability-
dependence of risk-taking in described versus experience-based choices based on “noisy
cognition”. Noisy cognition has recently been proposed as an explanation of standard
probability-dependence in described choices (Zhang et al. 2020, Enke & Graeber 2023, Oprea
2024, Vieider 20245, Frydman & Jin 2025, Khaw et al. 2025). We extend this theoretical
framework to a sampling-based setting, thereby showing that 1) noisy cognition provides
a unified theoretical setup under which to rationalize description- and experience-based
choices; 2) by leveraging the insights from the model on the causes of probability-dependence
in DfD, we are able to experimentally remove such standard probability-dependence; and
3) by combining this treatment with a similar intervention on DfE, we can finally close the

the gap between description-based choice and experience-based choice.

The description-experience gap and its significance. Suppose a decision maker (DM)
has to make a choice between a sure amount ¢ and a lottery that pays « > ¢ with probability
p (and y < c otherwise).! In what has come to be the standard protocol, DMs are explicitly

told how many outcomes each lottery can produce, the payoffs each outcome results in and

"We will use this simple choice as a running example, and our experiment will exclusively employ such
simple choices. Our framework extends to losses in a straightforward manner. It can also be extended to
multi-outcome lotteries via an N-dimensional generalization; see the Online Appendix for details.



the probabilities of each outcome. The DM uses this information to choose the lottery she
prefers. Call this standard paradigm “decision from description”, or DfD. More recently,
researchers have studied an alternative paradigm to DfD for studying lottery choice. In
“decisions from experience” (DfE) experiments (Barron & Erev 2003, Hertwig et al. 2004),
subjects are told nothing about the two lotteries but must learn all of their properties
entirely by sampling each of them. In standard DfE experiments (under the so-called
“sampling paradigm”), subjects choose how many times to sample each lottery and use the

information gleaned from these samples to make their decision.
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Figure 1: The GAP: Decisions from Description vs Decisions from Experience

The figure shows choice proportions for the risky lottery in DfD and DfE, ordered by probability of winning. The
figure shows between subject comparison based on identical tasks that are either described (DfD) or sampled
(DfE), fitted with a linear regression line. The tasks are constructed in such a way that the sure amount varies
symmetrically around the expected value of the lottery (see below for details). The error bars indicate +1
standard error.

Figure 1 illustrates the opposite changes in risk-taking over the probability interval one
observes in DfD vs DfE based on a replication experiment we conducted (see below for
details). When facing lotteries with a small probability of winning, DMs take more risk
in DfD than in DfE. This tendency, however, completely flips for large probabilities of
winning: subjects are now much more risk-taking in experience-based choice. The inverted
responses in DfE and DfD produce what the literature has called the “decision-experience
gap” (hereafter, simply the GAP) in lottery choice. The significance of this GAP stems
from the observation that it remains an open mystery in the literature. In particular,
it has eschewed uniform modeling — constituting a paradox under behavioral models of

risk-taking such as prospect theory — and has resisted repeated attempts at closing it



(reviewed below). Understanding the source of this gap is crucial to understanding not just

probability-dependence, but the determinants of risk-taking more generally.

Our contribution. In this paper we offer a theoretical explanation for the GAP that also
explains the nature of probability-dependence in risk-taking. Our explanation is rooted in
a kind of irony: the decision-experience gap, we argue, is a consequence not only of the
fact that DfD and DfE are psychologically different, but also of the fact that they are in an
important sense more psychologically similar than has been previously recognized. Drawing
on arguments and evidence from neuroscience, we argue that the kind of explicit sampling
that occurs in DfE also necessarily occurs implicitly in the brain when a subject reasons
about the properties of fully described lotteries in DfD. The noisy representations arising
from finite sampling can simultaneously generate classic probability-dependence as observed

in DID and its inversion in DfE.

The inversion in DfE, in particular, is driven by the role of sampling variance in endogenously
determining when to stop sampling. This, in turn, will drive the extent of sampling error —
a key element for understanding experience-based choices (Hertwig et al. 2004, Fox & Hadar
2006, Hertwig & Pleskac 2010). A key novelty we present here is the endogenous nature of
the decision on when to stop sampling, which allows us to provide a unified representation
of decision processes at work in DfD and DfE. The prediction arising from this is striking:
ex ante risk averse DMs should sample more from lotteries with large probabilities than
from those with small probabilities. This will reduce sampling error for large probabilities
while concomitantly increasing confidence in the sampled proportions, thus inducing ex ante
risk averse DMs to take more risk for large probabilities in DfE. This mechanism is indeed

strongly supported in our data.

Our theoretical insights also allow us to explain why previous efforts to eliminate the GAP
have failed. In particular, we show that efforts to close the GAP by forcing subjects in DfE
to sample more intensively than they naturally would — as done e.g. by Hau et al. (2008,
2010), Ungemach et al. (2009), Aydogan & Gao (2020), Cubitt et al. (2022) — has the
unexpected effect of simultaneously removing the sampling variance needed for standard
probability-dependence to occur, leading to behavior broadly consistent with EUT, rather
than standard probability-dependence.? This means the GAP can never be eliminated by

2Note that our results here are fully consistent with previous attempts at closing the GAP in similar ways,
such as the one of Ungemach et al. (2009). Just like shown by the latter, forced sampling in DfE alone does
not close the GAP. By using richer choice tasks, however, we can directly test for probability-dependence in
risk-taking, something that previous studies could not do directly.



forcing subjects in DfE to observe larger samples alone: in order to close the GAP, we must
also increase the precision of neurally coded probabilities in DfD, and thus reduce classical

probability-dependence in described choices.

Our contribution here is to offer a particularly direct type of evidence for this hypothe-
sis, and to show that it accounts for the description-experience gap. The main novelty on
the experimental side thus emerges from a treatment that requires subjects to take large,
balanced samples from fully described choice options. Even though such samples are com-
pletely redundant from the perspective of preference-based models such as prospect theory,
they allow us to address the fundamental cause underlying noisy cognition. Our results
indicate that such samples have a large effect: after forced samples subjects make mildly
risk averse lottery choices that broadly comply with standard EUT. By applying a similar
manipulation to DfE we further show that eliminating the causes predicted by the model
to underlie the opposite deviations from EUT allows us — for the first time ever — to

completely close the description-experience GAP.

We finally supplement this evidence with an additional treatment that allows — but does
not force — subjects to freely sample from described choices. This allows us to show, first
of all, that subjects do indeed feel a need for sampling, even for fully described choices and
in the presence of considerable opportunity costs. Just as importantly, our model predicts
this treatment to introduce sampling error into description-based choice. Our data show
that this is clearly the case. By letting subjects freely sample from fully described choice
options, we introduce positive probability-dependence of the DfE kind into DfD. Although
some differences in the degree of probability-dependence remain, this achieves something
that acting on DfE alone has never achieved: we can close the GAP by acting on one of the

two experimental paradigms alone.

Fit with the literature. Our paper contributes to several literatures. First is a long run-
ning literature on probability-dependence in risk-taking and related anomalies, going back
to Preston & Baratta (1948). Such probability-dependence became a key component of
prospect theory, where it is captured by an inverse S-shaped probability weighting function
(Kahneman & Tversky 1979, Tversky & Kahneman 1992, Tversky & Wakker 1995, Wakker
2010), and is the mechanism by which that theory accounts for phenomena like the coexis-
tence of lottery play and insurance uptake and the Allais paradoxes. Numerous empirical
studies have documented systematic increases of relative risk aversion in the probability of

winning a prize — Imai et al. (2025) provide a meta-analytic overview of the evidence in



DfD.

The second is a literature documenting the gap between DfD and DfE (Barron & Erev 2003,
Hertwig et al. 2004). Sampling error was proposed as an early explanation for the GAP (Fox
& Hadar 2006). However, subsequent investigations showed that, although sampling error
is an important contributor to the GAP, interventions including (i) eliminating sampling
error by matching probabilities in DfD to DfE, (ii) increasing the samples by offering higher
stakes, and (iii) forcing people to sample the complete urn in DfE fail to eliminate the gap
(Hau et al. 2008, Ungemach et al. 2009, Hau et al. 2010, Hertwig & Pleskac 2010, Wulff
et al. 2018). Because of this, the underlying causes of the GAP have largely remained a
mystery — see Hertwig & Erev (2009) and de Palma et al. (2014) for narrative reviews, and
Wulff et al. (2018) for a systematic meta-analysis of the decision-experience gap and possible
factors contributing to it. Cubitt et al. (2022) present a careful experimental decomposition,
which concludes that sampling error is the prime driver of the GAP (but once more fails to

close the GAP by eliminating sampling error, pointing at missing pieces in the explanation).

The third is a growing literature documenting the role noisy cognition plays in behavioral
anomalies (Natenzon 2019, Khaw et al. 2021, Frydman & Jin 2022). Most closely related
is a line of research examining how cognitive noise (and efficient ways the brain deals with
such noise) contributes to distorted perceptions of probabilities (Zhang & Maloney 2012,
Steiner & Stewart 2016, Zhang et al. 2020, Enke & Graeber 2023, Herold & Netzer 2023,
Netzer et al. 2024, Frydman & Jin 2025, Khaw et al. 2025, Oprea 2024, Vieider 2024b). More
broadly, our work is related to a literature documenting the role cognitive frictions play in
decision-making under risk (Enke & Graeber 2023, Bohren et al. 2024, Oprea 2024) and,
broader still, the way cognitive constraints and the brain’s response to these constraints
explain a wide class of anomalies in decision-making (Simon 1959, Robson 2001a,b, Netzer
2009, Robson & Samuelson 2011).3

3A recent, contemporaneous paper, Bohren et al. (2024), documents and decomposes a complemen-
tary description-experience gap that operates in richer environments than the one we (and the previous
description-experience literature) study. In evaluating realistic lotteries with many potential outcomes (e.g.,
eleven states), they show that subjects’ behavior tends to be constrained by memory limitations in DIE,
while it tends to be constrained by attentional limitations in DfD. This leads to systematic differences in
lottery choices in DfE and DfD environments — a gap that can be eliminated with aids to attention and
memory. Memory seems to play much less of a role when studying simpler choice sitautions such as the ones
we use here — see the GAP decomposition by Cubitt et al. (2022) for details.



2 Drivers of risk-taking in DfE

What is responsible for the GAP and the reversals of probability-dependence that produce
it? Here we start from DfE, highlighting two basic features of the information structure.
The first is the well-known sampling error: unless the DM collects a very large sample, she
runs the risk of drawing misleading samples that systematically distort beliefs particularly
at extreme probabilities. The second (which has not been emphasized in the literature so
far) we will call sampling variance: because the DM’s sample is finite, she cannot be entirely
confident in the sample she draws. This will make it optimal to combine such samples with
her prior beliefs in a Bayesian fashion, distorting her posterior beliefs. As we will show,
these two features interact, and are responsible for the positive probability-dependence of

risk-taking observed in DfE.

To fully specify a model of DfE, we must describe not only how people form beliefs about
probabilities and payoffs, but also how these beliefs co-evolve with higher order beliefs about
the structure of the lotteries (e.g., the number of outcomes in each lottery’s support). To
close the model, it is therefore necessary to make a number of detailed modeling choices
about the evolution of these structural beliefs that do not directly impact the way we
interpret and design our experiments. In the Online Appendix A.1 we propose such a fully
specified model.* But in this section, for expositional ease, we abstract from these issues
of higher order belief formation altogether by (i) assuming that subjects already know the
structure of the lotteries®, (ii) that subjects quickly identify which lottery is risky during
sampling and (iii) by focusing attention on the way subjects evaluate the risky arm. In the
fully specified, general model in Online Appendix A we discuss the implications of these

assumptions, but argue that they are qualitatively irrelevant to the key matters at hand.

Basic model structure. To model the way beliefs change as a DM samples the simple
binary lotteries in our experiment, let & be the number of draws in which the DM observed

payment x and S the number of draws in which she observed payment y. We model

“In the full version of the model in Online Appendix A, we close the model by assuming that (i) subjects
mainly use samples to build beliefs about the comparative properties of the two choice options (which seems
likely given the choice subjects face), (ii) that subjects know that they are making a risky choice and that
the choice is therefore not between two degenerate lotteries (which seems likely given the lotteries subjects
exclusively see in Part 1 of the experiment) and (iii) make a few other technical assumptions required to fully
specify the joint inference problem. The main implication of (ii) is that inferences in which the outcomes
observed in both choice options are attributed probability close to 1 will carry very high noise, in a sense to
be made precise below. Within the formalism of the model, this assumption mainly serves to explain why
subjects take more than 1 sample from each option.

SIn our experiment, this is in fact a fairly realistic assumption, given that subjects entering DfE have all
just made a number of lottery choices, all with the same structure.



this sampling process using a Beta distribution with parameters a and [, producing a
representation of the probability p of earning z equal to E[p|p] = ;55 (i.e. the sampled
mean probability p, given the true probability p). We will assume that the DM’s beliefs are
represented in a log-odds form. This is not necessary for any of our qualitative conclusions
in what follows, but (i) it is increasingly supported in neuroscience both empirically and
theoretically” and (ii) it will allow us to neatly connect our characterization to a linear in log-
odds (LLO) functional form that is commonly used to characterize probability-dependence

in risk-taking in the prospect theory literature (Gonzalez & Wu 1999).

Sampling error. Successes a and failures § are, on average, sampled in an unbiased
way (i.e., In (%) =In (lj'%p) on average). However, the binomial distribution will produce
samples that underestimate small probabilities and overestimate large probabilities (unless
the samples are unrealistically large). This issue — typically termed sampling error in the
DfE literature — has been discussed as one of the key drivers of the GAP from the very
beginning (Hertwig et al. 2004). Fox & Hadar (2006) argued that sampling error may indeed
be the sole driver of the GAP, and that eliminating it ought to result in choice patterns that
converge towards those observed in DfD. The subsequent literature has thus devoted much
energy to trying to eliminate sampling error, either by incentivizing or forcing subjects to
take larger samples (Hau et al. 2008), or by forcing subjects to take large, balanced samples
from both choice options (Ungemach et al. 2009), or by only selecting samples that happen
to reflect the true underlying probability (Wulff et al. 2018). Two key insights resulting
from this literature are that 1) sampling error explains at least part of the GAP; but 2)

while reducing or eliminating sampling error narrows the GAP, it fails to close it completely.

51t is important to emphasize that our model does not require us to assume that the DM knows the
structure of the decision problem. We use a Beta distribution here purely for expositional simplicity, and
because binary lotteries is all a DM will ever experience in our experiments. Our model generalizes to any
number of outcomes by using a Dirichtlet distribution—the multi-dimensional generalization of the Beta—to
represent the different states. Indeed, we can use Dirichlet distributions defined over all possible outcomes
to explicitly model the inference process of the DM about the underlying state space in DfE—an important
element that distinguishes our approach from some of the DfE literature in economics, which has assumed
that the DM (often counterfactually) knows the objective state space or which has (in some papers) provided
this information ex ante in experiments (Abdellaoui et al. 2011, Aydogan 2021, Cubitt et al. 2022). Online
Appendix A provides details of the inference process, and of how the model we use here can be generalized
to N states of nature.

It is common in neuroscience to assume that the brain represents the sort of evidence encoded by « and
[ in terms of log-odds. This is in part because of its computational efficiency for the brain, a straightforward
consequence of the fact that new evidence can be simply added to pre-existing evidence, which is a much less
computationally expensive operation than, e.g., multiplication. It is also in part because of the empirical
success of such representations. For instance, Zhang & Maloney (2012) describe log-odds representations as
“ubiquitous”, discussing a long list of findings which can be fit by log-odds representations. Glanzer et al.
(2019) identify a unique empirical signature of log-odds representations, and argue that such representations
underlie neural representations in general.



Unbiased samples in any given task will only obtain if the DM takes very large (technically:
infinite) samples. As a result, we should expect the ratio of o and 8 observed by subjects
in finite samples to produce systematically distorted impressions of the log odds. This is
particularly true of samples taken from lotteries with extreme probabilities, where sampling

error is most likely and where the gap between description and experience is most severe.
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Figure 2: Sampling error and inference error in DfE

The figures show how sampling error and sampling variance evolve as samples accumulate. Panel A shows the
likelihood to underestimate a probability of p = 0.1 as the number of samples increases (by steps of 5 samples).
The smallest number of samples for which such a probability can be accurately estimated is 10. At 10 samples,
however, the likelihood of underestimating the probability still exceeds the likelihood of estimating it correctly
or larger by 7 percentage points. This asymmetry is reduced at a decreasing rate as samples increase. Panel B
illustrates the evolution of sampling variance as a function of samples taken. Subsequent samples do not only
update the “best guess” of the probability, but also reduce sampling variance.

Panel A in figure 2 illustrates the sampling error occurring in small samples (see also Hertwig
& Pleskac 2010, for an extensive discussion). The figure illustrates the error asymmetry
— the excess likelihood of sampling a probability that is smaller than the true probability
compared to a probability that is larger — for p = 0.1. At 10 samples (the first number
that can theoretically result in a correct estimate), a DM is still 8.7 percentage points
(pp) more likely to underestimate the true probability than to overestimate it. This error
asymmetry subsequently decreases at a decreasing rate. At 100 samples (the number of non-
representative samples imposed by Hau et al. 2008 in their experiment 3), the asymmetry
in the direction of underestimation is still about 3pp. This highlights that 1) some degree
of sampling error is almost inevitable for extreme probabilities in realistic samples; and 2)

returns to sampling decrease rapidly once one exceeds a certain threshold.

Sampling variance. Because o and [ are finitely sampled, they produce noisy beliefs

about the true probabilities. Note that such beliefs will be noisy in finite samples even if



the samples are accurate on average, and the DM can never be 100% sure of whether a given
sample correctly reflects the underlying outcome-generating probability. This addition of
sampling variance to the explanation of the GAP is a novel contribution we bring to the
literature — and as we will see shortly — will provide the key to obtaining a unified

understanding of the opposite types of probability-dependence observed in DfE and DfD.3

Given samples of successes « and failures 3, the “best guess” of the log-odds will be given
by In (%), which is the log-odds equivalent of the mean of the Beta distribution (the
sampled proportion of successes x). The beliefs, however, must be augmented by an error
term € to capture variability in small samples. The log-odds formulation gives rise to
approximately normally distributed errors even with relatively few observations (see e.g.
Gelman et al. 2014, section 5.6), so that we will assume a logit-normal distribution for the
errors. Following the characterization of the logit-normal distribution by Atchison & Shen
(1980), it is straightforward to obtain an explicit solution for the sampling variance from

the draws representing the odds:
ENN(()?V?%) ) VZ:F,(O‘H)"’_F/(/Bn)v (1)

where F’ represents the trigamma function, and where we now subscript the samples and
sampling variance by the number of samples n to emphasize the dependence of these quan-

2

tities on the number of samples taken. The sampling precision v, (i.e. the inverse of

the sampling variance) will increase in the number of draws n. We can thus interpret the

2

precision v, © as a measure of confidence in the sampled proportion In (%)

Panel B in figure 2 illustrates how sampling variance evolves with subsequent samples. Let
us assume a DM starts sampling from initial parameters ag = fg = 1. This corresponds
to an ignorance prior with a uniform distribution attributing equal ex ante likelihood to all
probabilities (i.e. Laplace’s rule of succession).” This distribution is centered on p = 0.5,
but shows low confidence in that estimate (all probabilities are seen as equally likely). The
distribution parameterized by as = 6 and 85 = 1 shows the situation after 5 samples,

all of which have yielded draws of the prize . As one would expect, the mean estimate

80lschewski & Scheibehenne (2024) present a discussion of different types of noise arising when DMs
need to infer (and bet on) means of a series of sampled numbers, and present a concept of “Thurstonian
uncertainty” that resembles what we here call sampling variance.

9Note that this specific value only serves illustrative purposes, and is in no way essential to our conclusions.
This will become apparent shortly, when we will describe the Bayesian integration of the evidence from the
sample with prior expectations. Online appendix A.1 further discusses the likelihood in a more general
setting based on Dirichlet distributions used to infer the structure of the decision problem jointly with the
probability attached to each state.

10



of the probability is now larger. Just as importantly, the distribution has narrowed — the
sampling variance has decreased, thus increasing the ‘confidence’ the DM has in the sampled
proportion. Assume now the DM draws a sample of y. This reduces the sampled proportion
a/g, but also further increases the precision of the sample. This illustrates an important
property of the model: sampling variance is a decreasing function of the number of samples,

but constitutes a conceptually separate dimension from the specific samples drawn.!?

Optimal Bayesian Inference. Taking into account sampling variance in any given (finite)
sample, a Bayesian DM will rationally combine the results of her sampling with her prior
beliefs to draw inferences about the true underlying probability. Continuing with our log-

odds characterization of beliefs, assume that the prior, too, takes logit-normal form:

zn<1fp>w\/<zn<1fop0> ,02>. (2)

As we show in more detail in Appendix A.2, the posterior expectation of the log-odds being

inferred, In (%), conditional on the true log-odds, will take the following form:

i (555 525 - 5) -2
o) el (25) ()]

is the Bayesian evidence weight, i.e. the weight put on the sampled

3)

2
— ag
where Tn = m

Po
1—po
function of the number of samples n taken, since it is inversely proportional to the sampling
2

proportion relative to the prior expectation In < ) . Importantly, -, is itself an increasing

variance v,

~. The equation above gives us some interesting intuitions (technical details in

(1=vn)
Online Appendix A). Defining 4, = (12‘;0) and substituting it into the first line

in (3) yields a linear in log-odds probability weighting function as often used in prospect
theory (Gonzalez & Wu 1999).!' The second line in (3) illustrates why this results in biased
inferences: even for choice proportions /g, that are on average correct, the regression to

the mean of the prior will systematically distort the inferences drawn.'?

0Technically this orthogonality is not perfect, since both will depend on the number of samples drawn
to some extent. The dependence will be particularly strong for very small and extreme samples, e.g. when
only one single outcome has been observed.

' This conclusion holds because on average the sampled proportions ¢/ will be equal to the true odds.

12The expression indeed shows the definition of bias, inasmuch as it illustrates regression to the mean of

the prior as a source of systematic deviations from In (

g," ), which is an unbiased estimator of in (lf—p) on
average. It is important to note that — notwithstanding this systematic bias — the inference process is

optimal given some constraints on sampling (e.g. in the presence of opportunity costs or time pressure, both

11



The discriminability equation. One key insight from the model, which will allow us
to characterize behavior in DfE, derives from the observation that sampling variance and
sampling error will interact. In particular, sampling variance — and the resulting regression
to the mean of the prior described above — will determine at what point a DM concludes
that she has sufficient information to stop sampling. This constitutes a key innovation
of our approach, given that the DfE literature has paid relatively little attention to the
decision when to stop sampling.'® Here we will show that the sampling-stopping decision
is endogenous to 1) the prior expectation of the DM; and 2) the precision of the sample
drawn. The decision on when to stop sampling will in turn determine sampling error, and

thus the positive probability-dependence or risk-taking observed in DfE.

To understand why DMs tend to undersample in DfE, we leverage the result on probabilistic
inferences in equation (3). Assume a DM wants to maximize expected value, conditional on
her inference on the probability of winning. In the simple choice problems we use this entails
a choice rule in which the DM trades off the inference on the log-odds in (3) against the
log cost-benefit ratio, In (%) For expositional simplicity, we will assume in this section
that the log cost-benefit ratio (unlike the log-odds) is objectively perceived, though clearly
it will in fact be learned by sampling just as the log-odds are. This assumption will have
no impact on our qualitative predictions here but greatly simplifies the exposition.!* In

Appendix A.2, we show that this yields the following discriminability equation:

. Yo X 1N <%—Z> —In <§:Zé) — ln(ﬁn)’ @

Un X Yn

o
as a measure of “risk aversion” within the model generated by the distorting influence

1_’Yn
where 6,, & (ﬂ) is the inverse (weighted) prior expectation. This can be interpreted

of which apply in the context of our experiments). This happens because the bias introduced in each single
inference must be traded off against the resulting reduction in the variance across trials. The estimator used
here is optimal in the precise sense that it minimized the mean squared error. Bishop (2006), ch. 3, provides
a proof of this optimality in a machine learning context.

13Some papers have described recency bias and the importance of the last samples, but as far as we are
aware none has truly endogenized the sampling process. E.g., Hau et al. (2008) discuss opportunity costs
of sampling and their dependence on the stakes of the experiment. Hertwig & Pleskac (2010) point at
the strongly decreasing marginal informational content of additional samples as a possible reason for small
samples, without however formalizing this intuition.

147¢ is straightforward to extend the model to include noisy representations of cost-benefit perceptions —
see Vieider (2024b). Such noisy representations can, in fact, quantitatively enhance the patterns we describe
here in sequence. In our structural model estimates in Online Appendix E, we take explicit account of the
effects of sampling on the DM’s beliefs about the cost-benefit ratio.
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of the prior.’® In other words, risk aversion in the model can result from a pessimistic
prior expectation by the DM about the types of lotteries she will face.'® The subscript n
indicates the current sample count, which plays an important role in the characterization

of the dynamics underlying the equation.

Prior expectations and optimal stopping. Equation (4) trades off two dimensions:

Qn

the weighted log-odds, v, x In ( o ), which present evidence in favor of taking the lottery;
and the evidence against the lottery, given by the level of pessimism in 6,, and the log-
cost benefits. These two dimensions are weighed by their common standard deviation
Vn Yn, Which measures the degree of confidence in the quantities being traded off. Given the
normality assumption on likelihood and prior, ¥, will follow a standard normal distribution.
The cumulative distribution function of ¢, can thus directly be used to predict choice

probabilities. In a sampling framework such as DfE, however, oy, B,, and the derived

quantities v, = \/F'(ay) + F'(Bn) and 7, = %, as well as 1, itself, will all evolve as
a function of samples n. A central intuition underlying our model is that a DM will stop

sampling only once she feels that she has sufficient information to reach a decision.

Intuitively, equation (3) thus measures the accumulation of information as samples are
taken. If 1, becomes sufficiently positive, indicating information favorable to the lottery,
the DM will stop sampling and choose the lottery; if 1, becomes sufficiently negative, the
DM will stop sampling and choose the sure amount instead. Unless a threshold is reached,
she will keep sampling.!” Reaching a positive versus negative decision threshold, however,
will depend on prior expectations incorporated in 6, (as well as on the log-cost benefit ratio),
making the problem asymmetric. Let us assume for simplicity that costs and benefits are
equal. Intuitively, a risk averse DM —i.e. a DM with pessimistic prior expectations py < 0.5
— will have less trouble accepting negative evidence (draws of the lower outcome y) and
reaching the negative discriminability threshold than reaching a positive discriminability

threshold after observing the same proportion of draws of the prize x.

Figure 3 shows an illustration how discriminability ¢, evolves. The illustration is based

15We conceive of the quantities governing the prior po, and o2, as constant for the duration of the experi-
ment. This is plausible in our setting where 1) subjects face the same choices in DfE that they have phased
in part 1 on DfD; and 2) the experiment is very short.

16Note that we do not assume the prior to entail risk aversion. We rather treat it as a free parameter
through which any underlying risk aversion of the DM may manifest in the model.

1"What amount of information exactly is deemed ‘sufficient’ by a DM can thereby be subjective and vary
from DM to DM. In other words, the precise thresholds used do not affect the qualitative insights derived
here. What is important is that the DM will stop sampling once 1, reaches a sufficiently extreme value,
passing a subjective discriminability threshold. Note that thresholds may themselves change over time, as
is the case in drift-diffusion modeling. Again, this does not affect the qualitative insights we derive here.
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Figure 3: Evolution of discrimnability with samples

The figure shows how discriminabiity in equation (4) evolves with a series of 10 balanced samples. The DM is
assumed to be mildly risk averse, with pg = 0.45 and to face equal costs and benefits. Panel A illustrates what
happens when the outlying observation is drawn in sample 7, whereas panel B illustrates what happens if it is
drawn in sample 4 instead.

on a slightly pessimistic DM with py = 0.45. For simplicity, we assume costs to be equal
to benefits, so that their logged ratio drops out of the equation. To focus ideas, we will
further assume that in a series of 10 samples, the DM observes exactly one instance of x if
p=0.1 (and 9 of y), and just 1 of y for p = 0.9. The discriminability thresholds are set at
+1.28, corresponding to a one-sided test with a 90% confidence level. Panel A depicts the
situation in which the less likely outcome is observed in the 7th sample. When sampling
from p = 0.1, 9, hits the discriminability threshold after a uniform series of 5 ‘failures’ y.
The DM stops sampling, and chooses the safe option. While the samples for p = 0.9 are the
mirror image of those for p = 0.1, the evolution of v, is not. This asymmetry arises from
the pessimism in the initial prior. The DM takes 2 more samples, at which point v, reaches
the threshold, and the DM chooses the lottery. Remarkably, this happens even though the
7th and last sample is a draw of a ‘failure’ y.'® This illustrates the effect of the increase
in precision: even though the DM now slightly under-estimates the true probability, she

nevertheless chooses the lottery because she has high confidence in her estimate.

Panel B illustrates a further implication: that even the position of the outlying observation
in the 10 samples will influence the decision when to stop sampling. Here, the less likely

event is observed in the 4th draw instead of the 7th. While the positive threshold is

18The discriminability equation seems to make a small ‘jump’ upon sampling of the failure y. This arises
from the definition of sampling variance v2 = f'(an) + F(,), since the marginal increase of the trigamma
function is largest at small values.
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still reached after 7 samples, reaching the negative one now requires one more sample
than before.'® There is also a general implication that emerges from this illustration: all
sequences of 10 samples we used in the example are accurate in the sense that taking 10
samples results in the true underlying choice proportion being sampled. Nevertheless, the
endogenous decision on when to stop sampling produces sampling error in all four cases.
This illustrates how sampling variance and sampling error interact, given that the former
— in combination with the prior expectation — will determine when a DM stops sampling.
In reality, 10 samples will typically not correctly reflect the true probability, as illustrated
in figure 2 above. This will further increase the distortions introduced by the endogenous

sampling-stopping decision.

The interaction between precision and sampling error results in a testable insight: risk
averse DMs should sample more from large probability lotteries than from small probability
lotteries on average, whereas risk-loving or optimistic DMs should do exactly the opposite.
This prediction is new, and has not previously been examined in the literature, making it

a test that is diagnostic of the value of our model for the prediction of sampling behavior.

Implications for risk-taking. The decision on when to stop sampling, described above,
will in turn contribute to determining risk-taking patterns (jointly with the log-cost ben-
efits). Risk averse DMs facing small probability lotteries will stop sampling early because
the accumulation of failures arising from sampling error reinforces the prior expectation.
This will suggest a choice of the sure option, explaining widespread risk aversion for small
probabilities. For large probabilities, however, the initial series of successes drawn by a
majority of DMs clashes with their pessimistic expectations. This prevents the positive dis-
criminability threshold from being reached, and leads DMs to take larger samples. These
larger samples will still on average look favorable due to sampling error, which we have
seen to only decrease very slowly in the number of samples (cfr. figure 2, panel A).20 The

increased precision of the larger samples will concomitantly reduce the weight put on the

1—po
Po

goes to 0). This explains relatively high risk-taking for large probabilities, and thus positive

I—y
pessimistic prior expectation (i.e., § = < ) converges to 1 as 7 increases, and In(f)

probability-dependence of risk-taking in DfE. It also results in a testable prediction: the

19 An interesting consequence of this sort of stopping decisions may be apparent recency effects in DfE, as
discussed e.g. by Erev & Barron (2005). In the context of our model, however, such recency effects would
be mostly driven by the decision on when to stop sampling (see also Wulff et al. 2018, for a discussion of
this point).

29Tt is important to note that these are average patterns. Some DMs may draw very favorable samples
from small probability lotteries or very unfavorable samples from large probability lotteries, and thus take
the opposite decisions.

15



substantial risk-taking for large probabilities — and the positive probability-dependence

more generally — ought to be driven primarily by DMs who are ex ante highly risk averse.

3 Sampling in Decisions from Experience

3.1 Experiment description

In Experiment 1, we replicate the GAP, as shown in figure 1 in the introduction. Subjects
face 18 distinct binary choices between a sure amount ¢ and a lottery paying x > ¢ with
probability p, or else y = 0. We further randomly pick 4 choice problems to be repeated.
The lotteries vary p across 0.1, 0.15, 0.2, 0.8, 0.85 and 0.9 and vary payoffs « and c¢. The
sure amounts ¢ for a given probability include the expected value (EV') of the lottery, and
two amounts that are symmetric around the EV of the lottery (ie. ¢ = EV(x,p) £ h,
where h is $0.3 or $0.4). This will allow us to get a rich picture of behavior, and is
crucial to identify probability-dependence in risk-taking. We did not include intermediate
probabilities because we followed the DfE literature in our task selection, where the use of
intermediate probability is rare since they are typically not very informative for the GAP.2!
Lotteries are described to subjects as “bags,” containing 20 “coins,” each of which is worth
a different amount of money. At the end of the experiment, a lottery is randomly selected

and a single coin is drawn from the bag to determine the subject’s payment.

Bag A Bag B Sample Each Bag
80% are worth $2.00 y e $2.00
20% are worth $0.00 100% are worth $1.00 Sample Bag A Sample Bag B
(a) DD Treatment (b) DfE Treatment

Figure 4: Screenshots from Experiment 1.

Treatments. Experiment 1 consists of two treatments. In the DfD treatment, the subject
is explicitly told the properties of each lottery (i.e., the contents of each bag); Figure 4a
shows a screenshot. A pair of radio buttons below the lottery description allows the subject
to make and submit a choice between the two lotteries. In the DfE treatment, the subject
is instead shown two buttons, one for each of the two lotteries/bags. Figure 4b shows a
screenshot. When the subject clicks on the button, she is shown a single realization of the

lottery (i.e., a single draw from the bag, with replacement). The subject is told nothing

21This was also meant to limit the number of clicking necessary in the experiment, given that the forced
sampling treatments described below require 41 mouse clicks per task.
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about either lottery and must learn all of their properties by sampling. The subject in
the Figure 4b example has just clicked the “Sample Bag A” button and drawn $2. Each
sample is shown for 0.5 seconds. Subjects are allowed to sample as many (or as few) times
as they like from the two bags, with no time constraints. Below the sampling buttons are
the same two radio buttons shown beneath the lottery descriptions in DfD, and the subject

can choose one of the lotteries to determine her payment whenever she is ready.

Stages. Each session in the experiment proceeds in two stages. In Stage 2, subjects
experience their main treatment: 22 randomly ordered lottery choices under DfD or DfE,
depending on treatment. In Stage 1, subjects face the same 22 binary choice tasks under
DfD (in a different random order). We included Stage 1 for several reasons. First, doing
this allows us to examine the GAP both within-subject (by comparing Stage 1 and Stage
2 in the DfE treatment) and between-subjects (by comparing Stage 2 in the DfE vs. DD
treatment). Second, including Stage 1 is useful for fixing prior beliefs about lotteries and
linking DfD and DfE behavior.

Implementation. We ran 99 subjects through the DfD treatment and 99 subjects through
the DfE treatment on Prolific. We paid all subjects $6 and selected 10% of them to be paid
based on a lottery outcome from a randomly selected task. The median subject spent 18
minutes in the experiment and the average subject earned $18.67 per hour. Instructions,

including 4 comprehension questions, are included in Online Appendix F.

3.2 Results: Sampling, Sampling Error, and Risk-Taking

Sampling patterns. We start by testing the key edogenous sampling predictions: (i)
sampling behavior should vary with the probability of the prize, p; and (ii) this dependence
should vary according to the subject’s pre-existing level of risk aversion as captured by the
prior mean. To test this, in first approximation we categorize DfE subjects according to
their risk aversion using their propensity to choose risky lotteries in Stage 1 by quantifying

the proportion of Stage 1 risk averse choices subjects make.??

In Figure 5, panel A, we plot the mean number of samples taken from the risky option in
Stage 2 as a function of probability p for subject classified as High and Low risk aversion
based on a median split of risk averse choices in the first, DfD stage of the experiment. We

find clear evidence of the predicted pattern: highly risk averse subjects sample substantially

22 As we will explain shortly, we expect behavior in DfD to also be affected by sampling variance, so that
this measure is only a prozy for risk aversion as captured by the prior. The results we report are, however,
robust to using the structurally estimated prior mean instead.
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more at high than at low probabilities; relatively risk tolerant (Low risk aversion) subjects
show (somewhat weaker) evidence of the reverse sampling pattern. Given that most subjects
in our sample are risk averse this results in an overall average tendency for subjects to
sample more for larger than smaller probabilities. These results strongly support the idea

that sampling precision interacts with prior beliefs to determine sampling behavior in DfE.

A B
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Figure 5: Samples by probability and risk aversion

Panel A shows the number of samples taken from the risky option by probability and risk aversion. Risk aversion
is assessed as the proportion of safe choices in the first, DfD part of the experiment, after removing repeated
tasks. The categorization is obtained using a median split. Error bars show £1 standard error. Panel B shows
the distribution of actual sampling error in the samples taken for a small probability of p = 0.1 versus a large
probability of p = 0.9. Dashed vertical lines show the true underlying probabilities generating the samples.

Endogenous sampling choices drive sampling error. Panel B in figure 5 shows the
resulting samples drawn for a small probability of p = 0.1 and for a large probability of
p = 0.9 (findings for other probabilities are similar, and shown in Online Appendix E).
The figure shows the direct consequence of smaller samples taken for p = 0.1 on average by
a risk averse subject population: the error of underestimating a probability of p = 0.1 is
clearly more frequent than the error of over-estimating p = 0.9. Across all small probability
lotteries, our subjects gather samples that produce a smaller probability than the true one
in 66% of cases overall, and an accurate sample in 3.4% of cases. For large probability
lotteries this is reversed, with 55% of samples over-estimating the true probability, and
only 2.2% resulting in a correct estimate. Sampling error is clearly more severe for small
probabilities than for large probabilities — a direct consequence of the smaller number of

samples taken for small probabilities on average.

Individual-level analysis. So far we have only shown aggregate patterns. An important

conclusion from our simulations was, however, that behavior will depend on individual-level
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expectations, as well as on the fortuitous samples drawn — including both the proportion
of winning outcomes, and the sequence in which these proportions are drawn. Here, we
use regression analysis to show that the results we document above are robust (i) to using
continuous measures of risk aversion; (ii) to conducting this analysis at the individual level;
and (iii) to using structurally estimated measures of prior expectations instead of the proxy
constituted by proportion of choices of the sure amount in DfD. All of these effects are
fully in line with the model predictions delineated above, and thus support our account of

endogenous sampling, and how it leads to sampling error.

dep. var: number of samples abs. sampling error
reg. (1) reg. (2) reg. (3) reg. (4) reg. (5) reg. (6)
probability 0.288 0.331 0.326 -0.027  -0.026  -0.020
(0.082)  (0.085)  (0.083) (0.008)  (0.008)  (0.008)
risk aversion 0.569 0.562 -0.016 -0.021 -0.009
(0.291)  (0.266) (0.012)  (0.011) (0.010)
prob x risk av. 0.618 0.645 -0.025 -0.030  -0.004
(0.087)  (0.086) (0.009)  (0.008)  (0.001)
samples -0.018
(0.009)
constant 3.635 3.705 3.700 0.046 0.006 0.072
(0.283)  (0.289)  (0.284) (0.011)  (0.023)  (0.011)
observations 2178 2178 2178 2178 2178 2178
subjects (clusters) 99 99 99 99 99 99

Table 1: Regression analysis of samples taken and sampling error

Regressions in the table are based on a Bayesian outlier-robust regression model. Robust regression is imple-
mented by means of a student-t distribution with 2 degrees of freedom, with random intercepts to cluster errors
at the subject level. Regressions (1), (2), and (3) use the total number of samples from the risky option as
dependent variable. Regressions (4), (5), and (6) use the absolute sampling error, defined as the true proba-
bility minus the inferred probability for small probability lotteries, and as the inferred probability minus the
true probability for large probability lotteries, as dependent variable. Numbers in parentheses indicate standard
errors. Risk aversion is captured by the proportion of risk averse choice in phase 1 DfD in columns (1), (2), and

(4), and by the inverse log-odds prior In (1;;7”) in regressions (3), (5) and (6). Probability and risk aversion

are normalized by taking z-scores.

Table 1 shows regressions detailing individual-level patterns. Regression (1) shows that
samples taken increase in the probability of winning across all subjects. Regression (2) uses
proportions of risk averse choices in the initial DfD phase to show that the larger overall
samples are mainly driven by risk aversion, and that probability-dependence of the number
of samples taken strongly increases in pre-existing risk aversion. Regression (3) further

probes the robustness of these results by instead using the theoretically correct measure of
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of equation (4) from the first phase DfD data.?3 All the results remain stable.

), which we obtain from structural estimations

Regressions (4) through (6) present regressions of the absolute sampling error (coded in the
direction of underestimating the small likelihood event). Regression IV uses the independent
variables from regression (2) to show that (i) sampling error decreases in the probability of
winning for average levels of risk aversion; and (ii) that sampling error for large probabilities
decreases (and sampling error for small probabilities increases) in the level of pre-existing
risk aversion. Regression (5) shows that all of these effects are stable to using the correct
prior expectation from regression (3) instead. Finally, regression (6) adds the number of
samples as an explanatory variable, and shows that sampling error indeed decreases in
the samples taken, as one would expect. The number of samples taken thereby absorbs
almost the entire effect of pre-existing risk aversion in the reduced form equations (4) and
(5). Taken together, these results show that 1) the number of samples taken increases in
the level of pre-existing risk aversion; 2) risk aversion particularly increases samples for
large probabilities, while it lowers them for small probabilities; and 3) the same individual
characteristics also determine the extent of sampling error. This constitutes a first key piece

of evidence in support of the mechanisms predicted by our noisy cognition model.

Number of samples, sampling error, and risk-taking. To complete the picture of
what drives behavior in DfE; we next look at risk-taking choices. Table 2 reports a series of
Probit regressions to investigate drivers of risk-taking at the individual level. Regressions
(1) and (2) show the reduced form regressions using the same characteristics used above
to predict sampling behavior and absolute sampling error (using the risk averse choice
proportion and the estimated inverse prior log-odds, respectively). Risk taking increases in
the probability of winning. Remarkably, however, risk taking particularly increases in the
probability of winning for DMs with the highest pre-existing degree of risk aversion. This

result constitutes direct evidence for the mechanism predicted by our model.

Regression (3) further adds the number of samples from the risky option and the sampling
error (coded as the error in samples in favor of the lottery). Both are highly significant pre-
dictors of the level of risk-taking. They also takes up most of the effect previously captured

by the interaction between the probability of winning and pre-existing risk aversion, which

23Note that to be applicable to the DfD data, the true underlying log-odds in (ﬁ) have to be substituted

for In (%) in that equation. Section A in the Online Appendix discusses the theoretical rationale for this

substitution, and section E provides the details about the econometric estimation.
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dep. var: choice of lottery over sure amount
reg. (1) reg. (2) reg. (3) reg. (4)

probability 1.134 1.199 1.775 1.714

(0.095) (0.095) (0.123) (0.131)

risk aversion 0.053 0.112 -0.188 -0.162

(0.105)  (0.110)  (0.151) (0.147)

prob x risk av. 0.625 0.735 0.259 0.029

(0.093)  (0.099)  (0.050) (0.056)

nr. of samples 0.877 1.534

(0.052) (0.085)

samp. error for lottery 0.673 0.790

(0.116) (0.119)

samp. error X samples 1.160

(0.017)

constant 0.398 0.436 0.706 0.373

(0.106)  (0.104)  (0.147) (0.153)

observations 2178 2178 2178 2178
subjects (clusters) 99 99 99 99

Table 2: Regression analysis of risk-taking

The table shows Bayesian Probit regressions of risk-taking on a number of independent variables. Errors are
clustered at the subject level using random intercepts. Probability, risk aversion, sampling error, and samples
from the risky option are normalized by taking z-scores. The sampling error is defined in the direction of favoring
the lottery. Standard errors are shown in parentheses.

nevertheless remains significant. Regression (4) further adds the interaction between sam-
pling error the number of samples taken. Risk-taking strongly increases in this interaction.
At the same time, the interaction between a pessimistic prior expectation and the proba-
bility loses its significance. This highlights the interactive role sampling error and number
of samples play in our model: sampling error in favor of the lottery will be most influential

in determining decisions when the DM has high confidence in the sampled proportion.

Taken together, the regressions above strongly support the mechanism predicted by our
model to drive positive probability-dependence of risk-taking in DfE. Regressions (1) through
(3) in table 1 illustrate the effect of pre-existing risk aversion, and its interactions with prob-
ability, on the number of samples taken. Regressions (4) through (6) in that same table
illustrate the effect this has on sampling error. Finally, regressions (1) through (4) in ta-
ble 2 illustrate the effect that pre-existing risk aversion interacting with the probability of
winning — mediated by the number of samples, the sampling error, and their interaction

— have on risky choice.
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3.3 Experiment 2: DfE+forced Treatment
In Experiment 2, we attempt to eliminate the GAP by forcing DfE subjects to sample from

each lottery (i) using a representative sample and (ii) via a relatively large number of draws.
The balanced nature of the samples is meant to eliminate sampling error. The large number
of draws is meant to increase sampling precision, thereby inducing subjects to rely on the

sampled information more than they rely on their prior expectation.

$2.00
Sample Bag A Sample Bag B

Figure 6: Screenshot from the DfE+forced treatment (Experiment 2).

We do this using the DfE+forced treatment, pictured in Figure 6. This treatment is identical
to DIE except that subjects are required to sample all twenty “coins” from each bag (lottery)
without replacement before making a choice between lotteries. Below each button, the
subject is shown how many times she has sampled from each bag and the total number of
draws she must make in total (set to 20 in this treatment). The radio buttons for submitting
the final lottery choice do not appear on the subject’s screen until she has sampled all 20
coins from each bag. In terms of the model, requiring the subject to exhaustively sample a
frequentist representation of each lottery means that subjects observe samples «, § for each
lottery such that a%LB = p, removing scope for sampling error. By setting the number of
elements in the frequentist representation to 20, we force subjects to sample far more times
2

than they are observed to do in the DfE treatment, thereby increasing the precision v~=.

In all other respects the experiment is identical to the DfD and DfE treatment.

Forced sampling eliminates probability-dependence in DfE. Figure 7 plots choice
behavior from DfE+forced, and reproduces behavior from DfE for comparison. As pre-
dicted, forced sampling produces a dramatic effect on behavior, particularly in reducing
the high levels of risk taking observed for large probabilities. Importantly, as predicted,
DfE+forced does this largely by eliminating probability-dependence.

To analyze this more systematically, we calculate choice proportions and their standard
errors for each of the 18 tasks. We then aggregate choice proportions across tasks weighing
them by the inverse of their squared standard errors, as done in meta-analysis or mea-
surement error models. Regressing the choice proportions of the lottery on the probability

of winning provides a direct test of probability-dependence in the choice proportions (see
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Figure 7: Effects of forced sampling in DfE on choice proportions

The figure shows the effects of forced complete sampling in DfE from both options. The error bars indicate +
1 standard error.

Online Appendix C for details). In DfE, this produces a coefficient on p of 0.284, with a
credible interval of [0.226, 0.347], showing how risk-taking systematically increases in the
probability of winning. Regressing choice proportions observed after forced sampling on the
probability of winning the prize, we find a slope of 0.080, with a CrI of [—-0.020 , 0.182].
This slope is significantly smaller than in DfE. The slope is also not significantly differ-
ent from 0 — positive probability-dependence of risk-taking in DfE has disappeared upon
forced sampling.?* Notwithstanding these significant changes on the DfE side, however, the
GAP does not close: although it has narrowed to 8.4 pp, it remains substantial as well as

statistically significant, with a CrI of [0.053, 0.115].

Our results are consistent with previous findings on forced sampling in DfE. Pioneering the
use of forced sampling in DfE, Ungemach et al. (2009) found the GAP to narrow, but not
close (see also Cubitt et al. 2022). Our conclusions are fully consistent with this finding, but
strengthen it further. In particular, our richer test stimuli allowed us to test probability-
dependence after forced sampling directly, and to show that it disappears — something
Ungemach et al. (2009) could not do due to the smaller number of task and absence of

variation in the EVs of the choice options conditional on a given probability.

240ne reason why there is still a slight positive tendency in risk taking could be memory effects. While the
previous literature using similar settings to our own has not found much of a role for memory (Ungemach
et al. 2009, Cubitt et al. 2022), we do find that the more recent half of samples has a slightly stronger effect
on risk-taking than the first half. This is consistent with effects of memory documented by Bohren et al.
(2024), albeit in a somewhat different setting.
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4 Closing the Gap: Forced sampling in DfD

Forced sampling leads to dramatic changes to DfE behavior, but it does not close the
GAP. This happens because — while forced sampling removes probability-dependence in
DfE — DfD still exhibits risk-taking that declines in the probability of winning. The key
reason for this emerging from our model is that very similar factors also afflict DfD. Risk-
taking decreasing in the probability of winning in DfD, we hypothesize, is a consequence of
imprecision in the perception of probabilities in DfD. Because of this, in order to fully close
the GAP, we have to increase the precision in probability perceptions in DfD in a manner

symmetric to the way we did in DfE.

We start from the observation that probabilities will have to be neurally represented by
spikes or action potentials before entering the decision processes. This will result in a
noisy signal r for the described log-odds, as modelled by Khaw et al. (2025) and Vieider
(2024b). Here, we hypothesize that this noisy signal can be conceived of as a ratio of
“neurally sampled” evidence in favor of the lottery and against it, and summarized by a
quantity (n(d/p) similar to the ratio of real samples used to characterize DfE above. This
follows the seminal discussion of log-odds coding by Gold & Shadlen (2001), who forcefully
argue that it is efficient for the brain to summarize evidence about an uncertain hypothesis
using a population of neurons in favor of the hypothesis and a population of “anti-neurons”

summarizing the evidence against.

This conceptual framework yields several insights: 1) the noisy signal for the true log odds
can be conceived of as a ratio of firing rates signaling evidence in favor and against the
lottery, In (%) ~N (ln (ﬁ) ,l/2>; 2) finite neural spike counts or activation potentials
making up @ and 3 will yield noisy representations in single trials; and 3) even though the
representation will be correct on average, thus avoiding the sampling error that affected
DfE, the lack of precision in the signals will yield regression to the mean of the prior just

as in equation (3) (see online appendix A for further details).

Closing the Gap. This explanation suggests a distinctive test for the hypothesis that
imprecision in neural representations is responsible for classic probability-dependence in
DID. If it is true that probability-dependence in DfD is driven by the noisy perception of
described probabilities as hypothesized above, then providing additional information in the
form of forced, balanced samples ought to remove this probability-dependence, just as it
did in DfE. This makes for a powerful test because 1) from the point of view of standard

models such as prospect theory, the information gleaned from samples is fully redundant
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in the DfD treatment; and 2) combining sampling information with described information
ought to allow us to increase the precision of the neural log-odds representations, thus
reducing or even eliminating probability-dependence in DfD. This provides a particularly
crisp test of noisy coding accounts of probability-dependence, since we can directly act on

the supposed causes of the phenomenon to try and remove it.

4.1 Experiment 3: the DfD+Forced Sampling Treatment

In Experiment 3, we attempt to eliminate the GAP by forcing DfD subjects to redundantly
sample large, representative samples from each lottery. In DfD+forced we show subjects
the same information about lotteries as we do in the DfD treatment (pictured in Figure
4), but we also provide subjects the sampling tools pictured in Figure 6 below the explicit
description, and force subjects to draw 20 times from each just as in DfE+forced. Indeed,
the DfD+forced treatment is identical to the DfE+forced treatment, except that lotteries
are fully described to the subject prior to, during and after sampling. This is an original

treatment that has not been tested before in the literature.

Forced sampling eliminates probability-dependence from DfD. Panel A of Figure
8 shows the effect of forced sampling in DfD, by plotting average choice proportions for
DfD+forced and (for comparison) DfD. As predicted, we find that forced sampling has
exactly the reverse effect on DfD as on DfE. At small probabilities, we find a sizeable
decrease in risk taking at most probabilities.? For large probabilities, on the other hand,
risk taking increases with forced sampling in DfD. Thus, just as predicted by noisy cognition
models like ours, providing completely redundant information to subjects has a sizable effect
on choices in DfD. While probability-dependence in DfD is —0.172, Crl [—0.239, —0.102],
it has disappeared after forced sampling (slope 0.058, CrI [-0.039, 0.157]).

Closing the GAP. What does the elimination of sampling error and the increase in preci-
sion via forced sampling (in both DfE and DfD) do to the GAP? Panel B of figure 8 shows
that the choice proportions are now very similar. Probability-dependence in DfD+forced,
at 0.058 (Crl [-0.039, 0.157]), and in DfE+forced, at 0.080 (Crl [-0.020 , 0.182]), are not
significantly different from each other. Nor does risk-taking in either treatment show any
sign of probability-dependence: the opposite patterns in DfD and in DfE disappear upon

forced sampling, converging to mild risk aversion as in standard EUT. As our structural

25The exception is p = 0.15. This is, however, in part caused by the aggregation across different values of
sure payments, c. For this particular probability, the changes across different sure amounts go in opposite
directions canceling each other out — see Online Appendix E for the plot broken down by values of c.
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Figure 8: Effects of forced sampling on choice proportions

The figure shows the effects of forced complete sampling in description-based choice. Panel A shows the effect
of forced sampling in DfD+forced on choice proportions for different probabilities, and compares it to DfD.
Panel B directly juxtaposes choice proportions in DfE+forced and DfD+froced. The lines are fitted by linear
regression to the average choice proportions by probability. The error bars indicate + 1 standard error.

estimations in Online Apppendix E show, subjects furthermore become much more similar

to each other, and the absence of probability-dependence becomes the rule in the data.

To provide a more nuanced picture, and to examine the GAP directly, figure 9 shows
differences in choice proportions between DfD and DfE for all 18 tasks. Panel A shows the
original GAP between DfD and DfE. We use a measure g capturing the difference in choice
proportions, defined so that positive values correspond to behavior typically documented
in the literature for the standard GAP — more risk-taking in DfD than DfE for small
probabilities, more risk taking in DfE than DfD for large probabilities. We then meta-
analytically aggregate the GAP across tasks, which yields an estimate of the overall GAP as
well as correcting for random sampling variation in single tasks (details in Online Appendix
C). In the absence of forced sampling, the GAP is significant in 12 out of 18 tasks when
looking at the raw choice proportions, and in 13 out of 18 tasks in the meta-analytic
posterior.26 At 15.7 percentage points (pp), with a 95% credible interval of [9.7, 21.8] pp,
the GAP is significant and large measured against the meta-analytic average reported by
Waulff et al. (2018), which comes to book at 9.7 pp.

Panel B compares description-based and experience-based choice proportions after forced
sampling (DfE+forced vs. DfD+forced), and shows that the GAP disappears in these

treatments. We find no significant gap for any of the 18 choice proportions in the meta-

26The exceptions in which the GAP is not statistically significant at conventional levels are small proba-
bility tasks with ¢ > pz.
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Figure 9: Meta-analysis of the GAP

Panel A shows a forest plot of the gap for our standard implementation of DfD versus DfE. Panel B shows a
forest plot of the GAP after forced sampling both from description and from experience. The light blue circles,
labeled ‘calc.’, indicate the raw differences in choice proportions in the data, g. The dark blue triangles, labeled
‘post.’, indicate the inferred posterior parameters, g. The thick, dashed vertical line indicates the meta-analytic
posterior mean, w, and the shaded rectangle indicates the 95% credible interval around that estimate.

analytic posterior. In the one case in which we see a significant gap in the raw choice
proportions, this gap goes in the opposite direction of the standard GAP. At 0.9 pp (95%
credible interval of [—-2.3, 4.1] pp), the meta-analytic posterior mean is arbitrarily close to 0.
The GAP has closed. Our results thus provide strong evidence that the decision-experience

GAP is a consequence of the two elements we expect forced sampling to remove.

5 Free Sampling from Described Choice Options

Representations of lotteries in DfD are noisy, indicating some natural limit to the precision
with which probabilities can be mentally represented. This raises two intriguing questions:

First, will subjects sample when given fully described options, even when they are not forced
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to do so? Second, if subjects do indeed sample, will the sampling error flip the probability-
dependence in risk-taking to qualitatively resemble the pattern observed in DfE? Assuming
that subjects combine the sampled information — which will inevitably be affected by
error — with the unbiased description, we may indeed expect probability-dependence of

risk-taking to change from negative in DD to positive in DfD+free.

In the DfD-+free treatment, we show subjects the same information about lotteries as we
do in the DfD treatment, but we also provide subjects the sampling tools just like in the
DifD+forced treatment. Other than in DfD+forced, however, the radio buttons to indicate
a choice appear from the very start. Subjects are told explicitly that they can sample if they
want to but that they do not have to, and that they can also indicate their decision directly
without sampling. We ran this treatment on Prolific with 101 subjects using otherwise

identical tasks and procedures as in DfD.

We do indeed observe that subjects sample when given the chance to do so, suggesting
at least partial awareness of coding noise in DfD. Across subjects and tasks, the average
number of samples is 1.74, of which 1.4 are taken from the risky option. Only 8 out of 100
subjects never sample at all, but most subjects take relatively few samples. Samples are
highest at the beginning, with 4.7 samples being taken on average across all subjects in
the first round. This declines rapidly to some 2.9 samples on average in the second round,
and to 2.4 in the third. After round 8, the average settles to a steady level of 1.3 samples
per task and subject. The fact that DMs do sample fully redundant information seems

remarkable in our context, given the high opportunity costs of subjects on Prolific.
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Figure 10: Structural estimates, DfD versus DfE
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We next examine what happens to choice behavior once free sampling is introduced. Our
model raises an intriguing question: may free sampling in DfD introduce sampling error
into DfD? The question arises simply because, although subjects are given an objective
description of the probabilities, our model suggests that actual samples drawn are combined
with the unbiased neural samples representing the evidence in favor and against the lottery.
Small samples, however, will suffer from the same issues we have seen in DfE: they will tend
to under-estimate the likelihood of observing the rare event, so that our model predicts that

they will yield biased updates of the true log-odds.

Figure 10 shows the raw choice proportions in DfD+free, and directly juxtaposes them
with the choice proportions in DfD and in DfE. The difference from DfD is very large,
with somewhat less risk-taking for small probabilities, and much more risk-taking for large
probabilities. This results in a positive dependence of choice proportions on the probability
of winning, with a slope of 0.174, and a 95% credible interval of [0.141, 0.241]. This suggests
that sampling error indeed affects DfD+free choices, just like predicted by our model. The
effect is indeed strong enough to considerably narrow the GAP in the opposite direction
when examining it meta-analytically: at 3.5 pp, the average GAP is now small, and (just)

not statistically significant, with a 95% CrI of [—0.001, 0.072].

The picture is more nuanced when looking at probability-dependence directly. Although
we now see positive probability-dependence of risk-taking in DfD+free, the influence of the
description is strong enough to keep the probability-dependence significantly smaller than
observed under DfE (where we have observed a slope 0.284, with a credible interval of
[0.226, 0.347]). This shows that samples from description — while affecting probabilities
in the way predicted by our model — are still balanced against the description provided on

the screen, with choices indicating an aggregation of the two types of information.

Our findings are consistent with studies that have investigated the effect of providing feed-
back after payoff-relevant choices under the form of single draws from the chosen option.
Van de Kuilen (2009) studied the effect of feedback provision after risky choices in a prospect
theory framework. He concluded that providing feedback shifted behavior towards linearity
in probability weighting, but could not fully test this proposition due to exclusive focus on
probabilities > 0.5 (see also van de Kuilen & Wakker 2006). Jessup et al. (2008) and Ty-
mula et al. (2023), who use both monkeys and humans as subjects, provided feedback after
choices for a large number of trials. While none of these studies focuses on the GAP, they

show that classic probability-dependence in DfD reverses upon the provision of feedback,
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resulting in the type of positive probability-dependence observed in DfE.

Our model sheds new light on these findings: unless independently and identically dis-
tributed samples are extremely large, they will introduce sampling error into DfD. The
reason this happens lies in the imprecision in the mental representations of probability that
are explicitly described: the residual uncertainty in their mental representations provides
opportunities for additional information to affect those representations. The feat of closing
the GAP with DfE by acting on DfD is remarkable inasmuch it achieves something that
acting on DfE alone has never achieved — it closes the GAP by manipulating one of the
two sides only. Guided by our model, we introduced sampling error into DfD, all the while
keeping precision relatively low due to the few samples added. This dramatically narrows
the GAP when people can sample freely, with DfD-+free approaching the type of positive
probability-dependence characteristic of DfE.

6 Discussion

In this paper we show that probability-dependent risk-taking and the description-experience
gap — two key phenomena in the lottery choice literature — are a consequence of the incom-
plete and imprecise ways decision makers perceive and represent information. Reducing the
imprecision of subjects’ beliefs by forcing them to observe redundant information causes
probability-dependence in risk-taking to disappear and closes the description-experience
gap. In addition to shedding significant light on a key mystery in the literature, we believe

there are several broader implications of our findings.

First, our results show the reach of the noisy cognition approach by extending it from
description-based choice to experience-based choice. Noisy cognition thereby organizes a
key paradox under existing descriptive models of chooice — the description experience
gap — showing the added value of the approach over existing models. Our sampling-
based characterization furthermore allows us to present a particularly crisp test of standard
probability-dependence in risk-taking when choice options are described: by forcing subjects
to take large, balanced samples from both choice options, we manage to completely eliminate
probability-dependence in risky choice. This treatment effect is difficult to account for via
alternative explanations that are not similarly rooted in cognitive imprecision. It further
shows that probability-dependence cannot be attributed to preferences, but is purely an
outgrowth of noisy cognition — a conclusion that goes beyond what has been shown in the

previous noisy cognition literature.
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Noisy coding models hypothesize that descriptive failures of benchmark models like ex-
pected utility theory (von Neumann & Morgenstern 1944, Savage 1954) are a consequence,
not of non-standard preferences, but rather of what we have called imprecision in men-
tal representations, driven by limitations in the way the brain encodes information. This
raises the question of what type of behavior a welfare-maximizing policy maker should take
into account. By strongly reducing imprecisions in mental representations, out treatment
interventions reveal mild, probability-independent risk aversion as a candidate for welfare-

relevant preferences.

An important question concerns the real world relevance of the findings we have presented
in this paper. A key insight we provide is that probability-dependence in risk-taking —
if any — will depend on the type of information to which a decision-maker is exposed.
Pure descriptions may well result in probability-dependent risk-taking of the standard type.
Arguably, however, many real world situations will result in frequent feedback under the
form of identically and independently distributed samples, which could induce the opposite
type of probability dependence. Many important questions — such as the extent to which
some salient events may be more important than less salient events in determining mental
probability representations — remain wide open at this point. Finding answers to such
questions will prove essential to finding explanations for real-world phenomena, such as

lottery play and insurance uptake.
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A Model derivation

A.1 A general inference model

In Decisions from Experience (DfE), subjects need not only learn the outcomes and under-
lying probabilities, but also the whole structure of the decision problem (i.e., the number of
outcomes in the lottery’s support). In the body of the paper we assume away this compo-
nent of the inference problem for simplicity and to focus our discussion on the influence of
sampling error and sampling variance. Here, for completeness, we propose a stylized model
of how such higher order learning could take place based on the sort of sampling from the
two options that occurs in DfE. We argue that expanding the model in this way has little

qualitative impact on our findings.

We start by discussing the structural inference process. Assume a DM believes that out-
comes will range from 0 to some upper limit u, outcomes beyond which are not considered
plausible.?” Take two objective probability distributions over all outcomes underlying the
two choice options, {po,p1,...,pu} and {qo, q1, ..., qu}, where subscripts indicate monetary
outcomes. In DfE, DMs will infer the probability distributions from the draws they observe.
Let the initial likelihood at time ¢ = 0, before any draws are taken, be encoded in two u + 1-
dimensional Dirichlet distributions, Da(7;) oc [[i_, p; ™~ and Dp(w;) IT5-o g;“i

A i

where p; = Zﬂiﬁ and g; = Z“’iw_ represent the subjective expectations of the probabilities
: w0

3 "
attributed to an outcome ¢ in the two choice options A and B. Given the ex ante exchange-

ability of the two choice options, the two Dirichlets will have the same parameters at time
t =0 . We assume that DMs consider any given outcome as equally likely in the two choice
options, so that m; = w; Vi at £ = 0. This assumption directly follows from the exchange-
ability of the two options before any draws have been observed, and is implemented in our

experiment by randomizing the risky and safe options in positions A and B.

We assume that what matters for decisions is the direct comparison between the two choice
options. To capture this in our model, we map the inferences based on the Dirichlets
encoding draws from the two choice options into a comparative Dirichlet which entails a
statewise comparison between to two options. That is, what matters for choices are events
in which one option pays a given outcome, while the other option pays a different outcome.

In our experiment, these will be the events under which the risky option pays x while the

2TIn principle, v can take any value, as long as it is finite. In our experiment, we tell subjects beforehand
that all outcomes will range between $0 and $ 35 inclusive, thus setting their expectations about this range.
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safe option pays ¢ < x, and the event under which the risky option pays y while the safe
option pays ¢ > y (see below for a generalization). The probabilities of the comparative
events e; (obtain x > ¢ rather than ¢) and ey (obtain ¢ rather than y < ¢) can now be
obtained from the single-state Dirichlets D(7;) and Dp(w;) defined for the two options,
since Ple1] = Pz Nc¢] = py X D and Ples] = Ply N¢] = py X pe. Given that for finite
samples p. < 1 and p, + p, < 1, the inferred probabilities will generally be subadditive,
that is, Plej] + Ples] < 1 (with 1 being the limiting case as samples tend to infinity). This
implies that we can express the subjective beliefs in the comparative states of the world
once again by a Dirichlet, D(d;) =[]}, P[ei]ﬁi_l, where A £ > | §; is the concentration
of the new Dirichlet, and ;5\1 £ 6i/x captures the mean belief about a given state i. While
some probability mass will thus remain attributed to ‘non-observed outcomes’, this part

will drop out of the main choice equation below.

This justifies the assumption of the Beta distribution in the main text: while the latter
imposes additivity in p, and py, that assumption serves to simplify our discussion, but has
no substantive implications for our conclusions (given that the non-observed states receiving
the remaining probability mass drop out of the discriminability equation). If, say, a third
outcome from the risky option were to be observed at some point, this would add a new
comparative state to the comparison (see below). In the text we further discussed inference
bias in terms of the samples taken from the risky option only. More generally, however, the
samples from the safe option will also count. While a precise closed-form solution does not
exist for that case, we can approximate the samples by the total samples for each state,
where the samples from the safe option are simply added to the samples indicating each
comparative sample in the sum of the trigamma functions. This means that our discussion
in the main text may quantitatively underestimate the samples, but that this more general

case will not qualitatively affect any of the conclusions drawn.

In the main text, we implicitly assume that subjects know which of the two options is
the risky one and which the safe. In reality, subjects need to infer this from the samples
they take. We make three assumptions in this regard. The first, and most substantively
relevant, is that subjects make inferences on the choice environment (including potentially
the intentions of the experimenter). This entails that choices between two non-degenerate
options are deemed extremely unlikely. Practically, this entails that sampling variance will

remain high until a plausible set of outcomes has been observed.?® The second assumption

28 This assumption seems particularly defensible in our DfE experiments, since all subjects assigned to this
treatment have all finished making dozens of binary DfD choices for lotteries with one degenerate and one
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is that we assume the initial parameters of the two choice option Dirichlets to be sparse,
ie. m,w; <€ 1V i. This assumption implies that subjects do not expect a very diffuse
probability distribution with many different outcomes. Practically, this helps explain why
samples are relatively small, since it keeps the probability mass assigned to unobserved

outcomes low in the comparative Dirichlet.

An additional assumption in the main text is that subjects can infer which of the two options
is the risky one. This obtains trivially once a subject has observed all three outcomes used in
our experiment (the two in the risky option, and the one in the safe option, which constitute
a ‘plausible minimal outcome set’ inasmuch as they indicate a non-degenerate choice, or
equivalently, they map into two comparative states with a meaningful tradeoff between log-
odds and log-cost benefits). This indeed follows directly from the two assumptions above:
that subjects expect non-degenerate choices, and that the initial parameters are sparse
(meaning that they do not necessarily expect more outcomes once they have observed a
plausible outcome set). The inference is somewhat less trivial as long as only one outcome

has been observed from each choice option.

We illustrate this based on the choice options we provide in the experiment. For small
probabilities, subjects are overwhelmingly likely to observe the lower outcome y. Given that
in our experiment ¥ is always equal to 0, and that we tell subjects that they will only ever face
non-negative amounts, this immediately identifies this choice option as the risky one. For
large probabilities, where subjects may observe two strictly positive amounts x and ¢ from
the two options, this is less obvious. We thus furthermore assume that the parameters of
the option-specific Dirichlets before any samples are taken will be characterized by sparsity
increasing in outcomes. That is, for any j > ¢, where the two indices are non-negative
outcomes, w; = m; < m; = w; at time ¢ = 0, before any samples have been taken. In practice,
this entails that subjects consider smaller outcomes more likely than larger outcomes. Notice
that this is the equivalent of a pessimistic prior for the inference process, and that it is thus

fully coherent with both our model and our empirical results.?’

non-degenerate lottery.

2%In principle, this inference process could be modelled as a probabilistic process resulting in stochastic
assessments of the riskiness of the two choice options after each sample. Such a model would follow a very
similar structure as our discriminability model, and we do thus not formalize it here. Such a model would
be most relevant for large probability lotteries in cases where only one outcome has been observed from
each option. The notion that subjects infer the structure of such choice problems from sampling draws is
indeed supported by the observation that samples from the safe option increase in the objective probability
of winning for both risk averse and risk seeking subjects in our data.
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A.2 Noisy log-odds representation

In our actual experiment, subjects will experience exactly 1 outcome from the sure option,
and no more than 2 from the risky option. We can thus use the 2-dimensional special case
of the comparative Dirichlet distribution discussed above — the Beta distribution (see above
for an explicit discussion of this simplifying assumption). In particular, the parameter «
will encode the ‘good state’, in which the lottery pays a prize x > ¢, whereas 8 will encode
the ‘bad state’, under which the lottery pays an outcome y < c¢. The perceived or sampled
probability of the good state favoring the lottery will thus be E[p] = ﬁ

We start from an optimal choice rule entailing expected value maximization. The DM will

thus choose the lottery over the sure amount whenever px + (1 — p)y > ¢, or equivalently

ln(pA) >ln(c_y).
1—p T—c

The transformation into log-odd space is convenient for computational reasons, but oth-

whenever

erwise inconsequential (see Vieider 20240, for an alternative derivation). The choice rule
entails that the log-odds in favor of the lottery will be traded off against the log of the ratio
of costs (c—y, potentially get the lower outcome y when ¢ could have been had) and benefits
(z — ¢; obtain the prize x instead of the lower sure amount ¢). Here, we will assume without
loss of generality that the log cost-benefits are perceived objectively. This is a simplifying
assumption that allows us to focus on the likelihood dimension, where most of the action
takes place. It is straightforward to generalize the derivation to include the noisy coding of
costs and benefits as well (cfr. Vieider 2024b).

The mean of the sampled log-odds can simply be derived from the two parameters containing

the counts of successes and failures:

[ (i55)] = (5)

Given limited samples, however, even samples that are accurate on average will contain
some error on single draws, driven by natural sampling variation around the true mean.

Averaging across all probabilities, we will thus observe

ay _ p
In (5) =In (1—]9) + ¢,

which, following Atchison & Shen (1980), could equivalently be written as the difference of
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the digamma functions of the two parameters, F () — F (3).

Log-odds tend to follow approximately normal distributions, giving rise to a logit-normal
(Atchison & Shen 1980). This suggests that ¢ ~ A(0,?). The sampling variance v?, in
turn, again derives from the properties of the logit-normal distribution, and is given by the

sum of trigamma functions of the two parameters, i.e. v? = F'(a) + F'(B).

Optimal Combination with Bayesian prior

Given the noise in inferences, it will be optimal to combine the observations with a Bayesian
prior. The optimality of this operation derives from the fact that — even though it will
introduce systematic bias into the estimates under the form of regression to the mean of
the prior — it will minimize the mean squared error across many estimates (see Ma et al.
2023, chapter 4, for an illustration). The reason for this is that the reduction in variance

of the estimator will more than make up for the introduction of bias.

The objective for the mind now becomes to infer the log-odds from the underlying samples
(whether they be true samples or virtual/neural samples — we drop the subscripts here

and derive the equation just once). The inference problem for any given choice task will

2 2
P o a v
E|ln{-—— =——— Inl=
{n<1—p)‘a’ﬁ] 02+1/2n(5)+02+1/2'u’

thus be as follows:

where we redefine p = In (ﬁ ‘;0> in the main text, and where the Baysian evidence weight
or “likelihood-discriminability” parameter is given by v £ J;fVQ = 1+V12 =% A step-by-step

derivation of this equation can be found in Vieider (2024a), chapter 2.

In DfD, the “virtual draws” encoded in « and g (referred to as @ and B in the main text)
are unobservable. We can, however, estimate the equation by aggregating across multiple
similar probabilities. This will yield the expectation over repeated stimuli of the posterior

expectation above, which takes the following form:

P a o P v
E|E|n{—)|= = l
[ [n<1p) B] ‘p] 02+V2n<1p>+02+’/2%

which now allows us to substitute the true log-odds for the sampled log-odds. Choice to

choice fluctuations in the samples will be reflected in the variance of the distribution, which

41



takes the form 721/2 = %.

Proof. The proof exploits the well-known property of the normal distribution whereby z ~

N (2,7%) implies bz + a ~ N (bZ + a,b*7?). To obtain the response distribution above, let

2

In (%) =z, 020_:1,2 =b, 0213_,/2 H = b, In (1]'%])) = 27 and v = 7. o

Note that the problem does not change in any substantive way if we abandon the assumption
of draws correctly reflecting the underlying distribution on average when real samples are
taken in DfE. We then simply change the objective probability p to the sampled probability
p in the equations above. Sampling bias in p will then occur on top of the inference bias,

which still results in regression to the mean of the prior, just like represented above.

Stochastic choice rule

We can now trade off the inferred log-odds, as derived above, against the log-cost benefits, as

1=
suggested by our optimal choice rule. Letting p 2 In <1f‘;0>, we obtain 6 = In (120) ,
and by extension, § = § 1 = ln(%)k'ﬁ Putting everything on the scale of the standard
deviation of the response distribution derived in the previous section yields the z-score

describing the choice probability of the lottery:

pri(z,p;y) =] = @ i (1%9) - (%> 0 ;
YV

where @ is the standard normal cumulative distribution function. In DfD (as well as
DfD+forced and DfE+forced), the probability will correspond to the correct one, and the
model can thus be simply estimated on choice data by plugging the probit link function

above into a Bernuoulli distribution (see below).

In DfE, we need to slightly amend the function above. In particular, we will now substitute
sampled probabilities p for the true probabilities above (adding a constant to both numerator
and denominator to make sure it is defined—see discussion of the inference process above).
An additional assumption concerns the log cost-benefit ratio when either x , y, or ¢ have
not yet been observed. The simplest assumption is that of a “naive” decision maker, who
assumes the ratio to be 1 in that case (and hence its logarithm to be 0). However, this
is just a special case of what a more sophisticated decision maker would do. Multiplying

the log cost-benefit ratio by an additional parameter p, conditional on one of the outcomes
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not yet having been observed, allows for a more flexible specification whereby the DMs can
(correctly) infer a positive correlation between log-odds and log cost-benefits. The “naive”

DM discussed above is then just a special case for whom p = 0.

N-dimensional generalization

The inference framework discussed at the beginning of this section is fully general. While we
have described it for the particular case of comparisons used in our experiment, it can just as
easily be applied to comparison between multi-outcome lotteries. The inference framework
introduced above remains directly applicable, with the two option-specific Dirichlet simply
counting instances of different outcomes. Our setup assumes that outcomes are ordered by
size to arrive at the comparative distribution. The comparative Dirichlet is then constructed

over k comparative states constructed based on the ranked outcomes.

Take two lotteries offering outcomes £ = {z1,...,xz;} and y = {y1, ..., yx} under the com-
parative events ey, ..., e, where each comparative event is characterized by a probability
Di, which could be different from the true underlying probability p;. We assume that the
outcome are ordered such that x1 > a9 > ... > xp and y1 > yo > ... > yr. We further
assume for our representation that x is riskier than gy in the sense of having wider spread
or variance. Draws from the two choice options ought to be seen as independent, just as
is the case in the actual samples taken. The optimal choice rule, which once again entails

expected value maximization, takes the following form:

> lai—y) > 1, (5)

which sums the relative benefits of the riskier option, x; — y;.

Assuming that the different states will be processed in parallel, the stochastic choice equa-

tion then takes the following form:

k v X In f%l_ + 1 xIn(1(x; —y;)) — In(6)
pierg 3o [

i=1

where 1 = 1if x; —y; > 0 and else 1 = —1, thus assuring that the logarithm is defined. The
multiplication of the “relative benefit” by 1 further makes sure that this quantity enters with

the appropriate sign, since it could favor either choice option in any given state ¢. Given
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that any single comparison is standard-normally distributed, the sum over the different
comparisons will also follow a standard normal distribution. While this formulation could,
in principle, result in predicted choice probabilities greater than 1 or smaller than 0, this
is unlikely in practice, given that benefits and costs are usually designed to compensate
each other. A regularizing condition could be imposed to overcome this issue should it ever

become relevant in practice. We lave careful study of this extension for future work.

B Experiments

Choice stimuli

We selected our choice stimuli from those in the early DfE literature (Hertwig et al. 2004),
but generalized them so as to allow us to structurally estimate our model, and to obtain a
more balanced picture of the behavior. We assured identification of the structural estima-
tions using simulations, which allowed us to find the optimal compromise between number
and type of task and the length of the experiment. The limiting factor derived in particular
from the forced sampling experiments, where subjects had to take 40 samples by tasks, as

well as expressing their final choice.

We thus chose 6 different lotteries—3 with a small probability, and 3 with a large probability
of winning. We then obtained three choice tasks by lottery by setting the sure amount c
equal to the expected value, and by adding or subtracting a fixed amount. This provides
some valuable variation for the structural estimations, and results in the following 18 unique

tasks (4 randomly selected ones of which were repeated in the experiment):

C DMeta-analytic estimation

Quantifying the GAP. To get a better idea of the size of the decision-experience GAP in
our data, and to relate it to typical findings in the literature, we can aggregate the evidence
across tasks using the tools of meta-analysis.?C Let 7y = Ra/N, be the proportion of risky

choices in DfD, where Ry is the number of risky choices, and N; the number of observations.

39The meta-analytic tools we use are identical to a “measurement error model”. That is, the assumption
is that each single choice proportion is observed with some error. Meta-analysis then allows us to aggregate
across the choice proportions while eliminating measurement error and thus correcting our analysis for
multiple testing across many moderate (and not statistically independent) samples.
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Table 3: Choice tasks

small p large p
(31,0.10) vs. 2.8 (4,0.80) vs. 3.0
(31,0.10) vs. 3.2 (4,0.80) vs. 3.2
(31,0.10) vs. 3.6 (4,0.80) vs. 3.4
(10,0.15) vs. 1.2 (8,0.85) vs. 6.6
(10,0.15) vs. 1.5 (8,0.85) vs. 6.8
(10,0.15) vs. 1.8 (8,0.85) vs. 7.0
(16,0.20) vs. 2.9 (10,0.90) vs. 8.8
(16,0.20) vs. 3.2 (10,0.90) vs. 9.0

(16,0.20) vs. 3.5 (10,0.90) vs. 9.2

Choice tasks are describes as usual, with (z, p) designating a lottery providing a prize z
with probability p or else 0, and ¢ designating the sure amount.

Let e = Re/N. be the proportion in DfE. We define the difference in choice proportions as
g, where we encode the difference in the direction of the standard gap, so that g = 74 — 7,
for p < 0.5 and g = we — mgq for p > 0.5. This difference will be approximately normally
distributed, with variance 7(1 — ) (1/N; 4+ 1/N.), where m = K,‘dlf]:}"e. We can now use g and
its associated standard error, se, for meta-analytic aggregation across tasks, indexed by i:

gw/\/(ﬁi,se?)
giNN(vaQ)’

where g and se are data, g is the unknown true effect, and w and 7 are parameters capturing
the meta-analytic mean and standard deviation across tasks, respectively. We then quantify
the GAP by meta-analytically aggregating the differences in choice proportions across tasks

in a direction that is consistent with the standard GAP.

Reversals in Likelihood Dependence. We can also use meta-analysis to test whether
choice proportions exhibit probability-dependence, and whether the nature of this de-
pendence is different in DfE and DfD. To do this, we analyze the choice proportions m;
directly (instead of examining differences in choice proportions g¢;) so that we estimate
m; ~ N(7;, se; ). We then use meta-regression to assess the dependence of the choice pro-
portions on the probability of winning, by letting 7; ~ N( Ao + A x p;, 72 ), where 7; is the

unknown true choice proportion.

We estimate the model in Stan (see Vieider 2024a for a tutorial on the use of Stan for

decision models; chapter 4 contains a part specifically dedicated to meta-analysis). Here is
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the Stan code used to estimate the model:

//footnotesize
data{
int<lower=1> N; \\number of observation
vector [N] gap; \\difference in choice proportions
vector<lower=0>[N] se; \\standard error of the difference
¥
parameters {
vector [N] gamma; //true, estimated gap (called g_hat in paper)
real mu; //meta—analytic mean (omega in paper)
real<lower=0> sigma; //variance
¥
model{
//regularizing priors
sigma ~ normal( 0 , 1 );

mu - normal( 0 , 1 );

// measurement error model:

gap ~ normal( gamma , se );

// likelihood:

gamma ~ normal( mu , sigma );

The meta-regression is introduced into the same code simply by modifying the mean mu,

making it dependent on the probability of winning:

//footnotesize
data{
int<lower=1> N;
int<lower=1> K; //dimension of design matrix
vector [N] gap;
vector<lower=0>[N] se;

matrix [N,K] X; //design matrix of explanatory variables
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parameters {
vector [N] gamma;
real mu;
real <lower=0> sigma;

vector [K] beta;

}

model{
sigma ~ normal( 0 , 1 );
mu - normal( 0 , 1 );

// measurement error model:

gap ~ normal( gamma , se );
// likelihood:
gamma -~ normal( mu + X * beta , sigma );

D Structural estimation

We implement our structural equations based on the discriminability equation in the main
text, using the objective probability of winning, p, in DfD, DfD+forced, and DfE+forced.
We use the sampled probability In <%) in DfE, and complement this with an assumption
about the log-cost benefits in the case that one of the outcomes has not yet been observed

when the decision is taken, as described above.

We keep the model as simple as possible in order to maximize our comparative power and

to keep the model parsimonious. This means, first of all, that we normalize the coding noise

variance by division with the variance of the prior, so that v = 1+1 oz This helps both iden-
tifiability and comparability across treatments but happens without loss of generality, since
it is the ratio between coding noise variance and prior variance that determines behavior
(see also Natenzon 2019). Another assumption that we maintain throughout the paper is
that the mean of the prior, y, remains unaffected over the course of the experiment. We

exploit this in the estimation by letting u be the same across the 2 parts of the experiment,
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whereas v and as a consequence v and 6 are all allowed to vary freely.

We estimate the model using a Bayesian hierarchical setting in Stan (Carpenter et al. 2017).
The hierarchical setting allows us to pool information from the aggregate estimation, which
provides the priors, and from individual-level parameter estimates, which contribute to
the aggregate in proportion to their precision. The aggregation equation follows exactly
the equation we describe for our Bayesian inference process. Vieider (2024a) provides a

step-by-step tutorial on the estimation of decision models in Stan.

Below, we include an commented version of the code we use in DfD, DfD+forced, and
DfE-+forced (the code used in DfE is very similar, and only has an additional parameter p, as
well as including the truly observed log-odds as data; it is available upon request). We define
the variables at the level of the individual choices. This allows us to implement a literal
specification of our model, where task-specific quantities are encoded by parameters o and
5. These parameters are nested in individual-level parameters, which we use to fit the choice
data, and which ensures that the choice-level parameters are identified and well-behaved
(since the individual-level parameters act as informative priors). Finally, individual-level

parameters are nested within an overall distribution.

We check convergence by making sure that all R-hats are below 1.05. We also carefully
check that any divergent iterations do not indicate problems with the posterior (and discard
all estimates with more than 1% divergent iterations). The hyperpriors on the aggregate
parameter means are given very wide priors, which makes them mildly regularizing—they
help the convergence of the simulation algorithm by being centered around the region where
we expect the parameter values to fall, but they attribute significant probabilitry mass to
1 order of magnitude above the region into which we would expect the parameters to
reasonably fall. Our estimates are indeed not sensitive to the choice of the exact parameter
values. This follows best practices in Bayesian estimation.
data{ \\declare data

int<lower=1> N; \\number of observations

int<lower=1> N_id; \\number of subjects

array [N] int id; \\unique identifier

array [N] real high; \\outcome x
array [N] real low; \\outcome y

]
]
array [N] real sure; \\outcome c
]
]
]

array [N] real p; \\probability
array [N] int choice_risky;\\choice: 1 if risky
array [N] int part2; \\dummy to indicate part 2
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}

transformed dataf{
array [N] real lcb; \\log cost benefit ratio
array [N] real 1llr; \\log—odds
for (i in 1:N){
leb[i] = log( (sure[i] — low[i]) / (high[i] — sure[i]) );
Hr[i] = log( p[i]/(1 — pl[i]) );
}
}

parameters{
vector [3] means; \\aggregate mean parameters on log scale
vector<lower=0>[3] tau_-id; \\aggregate parameter variances
cholesky_factor_corr [3] L_omega_id; \\decomposed covar matrix
array [N_id] vector[3] Zid; \\stan dardized individual—level parameters
}
transformed parameters{
// covar and temp parameters
matrix [3,3] Rho.id = L_omega_id * L_omega_id’; \\obtain covariance matrix
array [N] vector[3] pars; \\parameter matrix on log scale
// generative parameters:
vector [N] mu; \\prior mean
vector<lower=0>[N] kappa; \\concentration partl
vector<lower=0>[N] kappaf; \\concentration part2
// derived parameters from here
vector [N] alpha; \\derived parameters—see definitions in text, and below
vector [N] beta;
vector [N] nu;
vector [N] gamma;
vector [N] theta;
vector [N] omega;
vector [N] alphaf;
vector [N] betaf;
vector [N] nuf;
vector [N] gammaf;
vector [N] thetaf;
vector [N] omegaf;
for (i in 1:N){
]

pars[i] = means + diag_pre_multiply (tau_id ,L_omega_id) * Zid[id[i]];
mu[i] = pars[i,1];

kappali] = exp(pars[i,2]);

kappaf[i] = exp(pars[i,3]);

// define derived parameters

alpha[i] = kappa[i] * p[i];
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beta[i] = kappa[i] * (1 — p[i]);
nu[i] = sqrt( trigamma( alpha[i] ) + trigamma( beta[i] ) );
gammal[i] = 1/( 1 + nu[i] 2 );
theta[i] = exp( ( gammal[i] — 1) % mu[i]) ;
omega[i] = nu[i] * gammali];
alphaf[i] = kappaf[i] * p[i];

betaf[i] = kappaf[i] * (1 — p[i]);

nuf[i] = sqrt( trigamma( alphaf[i] ) + trigamma( betaf[i] ) );
gammaf[i] = 1/( 1 4+ nuf[i]"2 );

thetaf[i] = exp( ( gammaf[i] — 1) * mu[i] ) ;

omegaf[i] = nuf[i] % gammaf[i];

}
model {

vector [N] udiff; \\local vector
\\priors for aggregate (hierarchical) parameters
tau_-id ~ exponential (5);

L_omega_id ~ lkj_corr_cholesky (4);

means [1] ~ normal(0, 5);
means [2] ~ normal (0, 5);
means [3] ~ normal (0, 5);

\\priors for individual level parameters, standardized:
for (n in 1:N_.id)
Zid [n] ~ std_normal ();

\\the mode:
for (i in 1:N ) {
udiff[i] = ( ( gammal[i] * llr[i] — leb[i] — log(theta[i]) )/ omega[i] ) * (1 — part2]
( ( gammaf[i] % 1lr[i] — lcb[i] — log(thetaf[i]) )/ omegaf[i] ) * part2[i]:
choice_risky [i] 7 bernoulli( Phi( udiff[i] ) );

}

\\code below recovers individual—level parameters
generated quantities{

vector [N] log_lik;

vector [N] udiff;

vector [N_id
vector [ N_id

] mun;
]
vector [N_id] alphan;
]
]

kappan;

vector [N_id
vector [ N_id

betan;

nun;
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vector [N_id] gamman;
vector [N_id] thetan;
vector [N_id] kappafn;
vector [N_id] alphafn;
vector [N_id] betafn;

vector [ N_id
vector [N_id

]
vector [N_id] nufn;

] gammafn;

]

thetafn ;
vector [3] temp;

for(n in 1:N_.id){
temp = means + diag_pre_multiply (tau_-id ,L_omega_id) = Zid[n];

mun|[n] = temp[1];

kappan [n] = exp (temp[2]);

kappafn[n] = exp(temp[3]);

alphan [n] = kappan[n]/2;

betan [n] = kappan[n]/2;

nun[n] = sqrt( trigamma( alphan[n] ) 4 trigamma( betan[n] ) );
gamman[n] = 1/(1 + nun[n]"2 );

thetan[n] = exp( ( gamman[n] — 1 ) % mun[n] );

alphafn [n] = kappafn[n]/2;
betafn [n] = kappafn[n]/2;

nufn [n] = sqrt( trigamma( alphafn[n] ) + trigamma( betafn[n] ) );

gammafn[n] = 1/(1 + nufn[n]"2 );

thetafn[n] = exp( ( gammafn[n] — 1 ) % mun[n] );

}

for (i in 1:N ) {
udiff[i] = ( ( gammal[i] * llr[i] — leb[i] — log(theta[i]) )/ omega[i] ) * (1 — comp[i])
( ( gammaf[i] % 1lr[i] — lecb[i] — log(thetaf[i]) )/ omegaf[i] ) * comp]i];

log_lik [i] = bernoulli_-lpmf( choice_risky[i] | Phi.approx( udiff[i] ) );

D.1 Structural estimation results

We use structural estimation to more deeply assess the hypothesis that both probability-
dependence and the description-experience gap are a consequence of cognitive noise — and
that our treatments eliminate these patterns by eliminating this noise. We structurally

estimate our model from choice data based on our discriminability equation (4). The key
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parameter driving both probability-dependence and the GAP in our model (and, therefore,
our focus in this section) is v, the weight the DM puts on her perception of the log-odds
in the decision process. We will refer to this as “likelihood-discriminability,” mirroring the
name given the equivalent parameter in the LLO function, “likelihood-sensitivity.” In the
model, v is an inverse function of coding noise: the smaller coding noise v becomes, the
closer v will come to 1, producing perfect discriminability of log-odds. Importantly, this
parameter is estimated, in part, using inconsistencies in subjects’ choices across repeated
instances of the same task (recall, four random tasks were repeated for each subject) which
give us direct, subject-level measures of behavioral noise. This analysis therefore relies on

new data, not reported in the previous analysis.

We estimate the model using Bayesian hierarchical techniques, which optimally combine
individual-level information with group-level evidence (Gelman et al. 2014). This allows us
to study distributions of individual-level parameters based on relatively few decision tasks
(details and code are provided in Online Appendix E). We normalize the variance of the
prior to ¢ = 1 throughout, so that sampling variance is measured relative to the variance of
the prior, ¥/o. This is done without loss of generality and to improve comparability across
studies, simply leading to a rescaling of the equation (see Natenzon 2019 for an equiv-

31 We execute tests on distributional differences and correlations in

alent simplification).
individual-level parameters based on the means of the individual-level posteriors through-
out. All comparisons are within-subject, leveraging our two stage design, unless specified

otherwise. We report four main findings:

First, we find that, conditional on the information subjects have about probabilities, esti-
mates of 7 indicate strong (and similar) levels of sampling variance in DfD and DfE, with ~
estimates well below the unbiased benchmark of 1. To estimate v in a way that makes DfE
and DfD estimates comparable, we estimate the model in DfE on the actually experienced
probabilities (i.e., probabilities implied by the sample subjects have drawn), rather than the

lottery’s true probabilities.?? Because of this, we must make an assumption on how subjects

31We estimate the model on choice data while leveraging our within-subject design. That is, we estimate
the model using the data from both treatments, and assuming that the parameters governing the prior
remain the same across the two treatments, while leaving the other model parameters free to vary. This
allows us to maximize the informative content of our sparse choice stimuli. See Online Appendix E for
details.

32We assume throughout that the initial Beta parameters, before any samples are observed, are a = § =
0.1. This assumption derives from our general inference framework, based on a diffuse Dirichlet space — see
Online Appendix A.1 for details. While values smaller than 1 are plausible (they imply that subjects expect
relatively few outcomes in our general inference framework), our results are not sensitive to variations of
this value within that range.
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perceive the log cost-benefit ratio in cases in which the subject fails to sample both lottery
outcomes before making a choice. Panel A in Figure 11 shows the cumulative distribution
function of individual-level v estimates under the assumption that DMs are “naive” in the
sense that they judge costs and benefits to be equal in such cases. In panel B, we instead
assume DMs are sophisticated in the sense that they realize that larger log-odds imply
larger log cost-benefits; the correlation measuring the degree of sophistication thus must be

estimated as an endogenous parameter (see Online Appendix E for details and additional

results).
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Figure 11: Structural estimates, DfD versus DfE

The figure shows structural estimates of the model parameters. Panel A compares likelihood-discriminability
~v in DfD and DfE for a naive decision maker, who assumes costs and benefits to be equal when one of the
outcomes has not been observed. Panel B compares likelihood-discriminability, «, for a sophisticated DM, who
(correctly) infers that log-odds and log costs-benefits are correlated in the choice problems. The correlation
coefficient is thereby estimated endogenously from the data (see Online Appendix E for details).

Regardless of the approach taken, two findings stand out from Figure 11. First, in both
DfD and DfE, ~ falls well below the unbiased benchmark of 1, suggesting a strong role for
inference bias in both settings as predicted by our model. Second, the distributions of ~
estimates are similar in both DfD and DfE.33 This is important because our model explains
the GAP between these settings not via differences in v but rather via the very different
effects the model predicts v has in DfD vs. DfE environments. The results therefore assure
us that the model parsimoniously explains differences in lottery choices across treatments,

conditional on the information available to subjects.

Second, we show that forced sampling in DfD and DfE results in a sharp increase in

33For the naive estimates pictured in panel A, likelihood-discriminability v is somewhat smaller in DfE
than in DID (p = 0.006). For the sophisticated estimates in panel B, the two distributions produce roughly
equal deviations above and below 0.5, and are not significantly different (p = 0.979).
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Figure 12: Structural estimates, DfD vs DfD+forced and DfE vs DfE+forced

The figure shows structural estimates of likelihood-discriminability . Panel A compares likelihood-
discriminability in DfE and DfE+forced. Panel B compares likelihood-discriminability in DfD and DfD+forced.

towards 1 (the unbiased benchmark), suggesting that the intervention influences behavior
(as predicted by the model) by severely reducing sampling variance and with it scope for
sampling error. In panel A and B of Figure 12 respectively we plot CDFs of estimated
individual-level mean ~ estimates in DfE3* and DfD with and without forced sampling.3®
In both cases, forced sampling causes a sharp rightward shift in the ~ parameter, with
medians in both cases of about 0.95 suggesting a near elimination of coding noise and

inference bias.3%

Third, we show that forced sampling in DfD and DfE — which, recall, caused a convergence
in behavior between the two treatments — also causes a convergence in ~. This suggests
(as our model predicts) a causal linkage between the two findings: joint convergence of
v in the two treatments towards 1 (signalling the disappearance of inference bias) causes
lottery choice patterns to converge, suggesting (as predicted by the model) that coding
noise was responsible for their initial divergence. Panel A of Figure 13 directly compares
~ in DfD4forced and DfE+forced. Over most of the distribution, the panel shows that
discriminability converges across the two treatments, suggesting that subjects are similarly

free of inference bias in the two settings — a finding that matches the similar revealed risk

31In DfE we plot estimates that assume subjects make sophisticated inferences about the cost-benefit
ratio, as discussed above.

35For this analysis, we use a between-subject comparison in both cases since DfE vs DfE+forced can only
be compared between subjects; in DfD, replacing this with within-subject comparisons yields very similar
results (cfr. Online Appendix E).

36Estimates also reveal a sharp reduction in cross-subject variance. This too is a prediction of the model,
since the treatment is predicted to have similar impacts on both initially high and low noise subjects.
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aversion in choices in the two settings. Indeed, non-parameteric tests detect no significant

difference between the two distributions (p = 0.376).37
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Figure 13: Effects of forced sampling, Structural estimates

The figure shows structural estimates of the model parameters. Panel A directly compares likelihood-
discriminability « in DfD4forced and DfE+forced. Panel B compares likelihood-discriminability, -, in DfD
without and with forced sampling. Panel B plots coding noise in first stage DfD against the change in likelihood-
disciminability when forced sampling is introduced.

Finally, Panel B of Figure 13 illustrates the reason for this effect by plotting coding noise v
(measured in the DfD choices in Stage 1 of the experiment) against the difference between
~ in DfD and DfD+forced (defined as 2 — 71, with subscripts indicating the stage of the
experiment), exploiting our within-subject design. The figure shows clearly that the effect
of sampling is most pronounced for those subjects who had the largest coding noise to begin
with. These results strongly support an additional prediction of the model: that sampling
should have the strongest effect on subjects who have relatively high coding noise to start
with (i.e., relatively small ‘spike counts’ @ and E) This is a consequence of the fact that
the reduction in coding noise decreases at a decreasing rate with further samples. The

figure thus shows in a particularly sharp way how strong the effect of forced sampling is on

likelihood-discriminability in the DfD treatment.

3"Nonetheless, as is clear from the graph, discriminability is somewhat lower in the left hand tail of the
DfE distribution. We hypothesize that this is due to limitations on subjects’ memory, highlighting the value
to subjects of having an explicit description of the outcomes and probabilities on the screen (in DfD+forced)
to guard against inattention and working memory limitations.
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E Additional results

Additional results on free sampling in DfE

Subjects take relatively few samples in our experiment, something that may be explained
by the high opportunity costs faced by subjects on Prolific, who—contrary to students in
lab or classroom settings—can leave as soon as they are done with the experiment and move
on to other earning opportunities. The average number of samples taken is 8, which puts
our study at roughly the first tercile of the distribution summarized in the meta-analysis of
Wulff et al. (2018). Samples taken, however, generally tend to be lower in tasks comparing
lotteries with sure outcomes, as we use here. The average subject on the average task takes
3.3 samples from the safe option, but 4.3 samples from the risky option. However, samples

vary greatly between individuals, ranging from 2 on average (1 per option) to about 40.
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Figure 14: Samples by probability and risk aversion
The figure shows the number of samples taken from the risky option by probability and risk aversion at the task
level resolution in Panel A. Risk aversion is assessed as the proportion of safe choice in the first, DfD part of
the experiment, after removing repeated tasks. The categorization is obtained using a median split. Error bars
show +1 standard error. Panels B through D show the distribution of sampled probabilities by different actual
probabilities.
Panel A in Figure 5 examines the average samples by probability from the risky option at the
task resolution. The samples are presented following a median split on risk aversion in the
first, description-based, part of the treatment, implemented as the proportion of choices of
the sure amount. This aims to test our model prediction according to which samples should

vary with the underlying probability depending on the initial risk aversion of the DM. These
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predictions are strongly supported by the evidence presented in the figure. Risk averse DMs
take few samples from small-probability lotteries, but sample significantly more from large-
probability lotteries. For the least risk averse half of the sample, we observe a (somewhat
weaker) trend in the opposite direction. This aligns with our prediction, according to which
risk averse DMs should have less of a conflict between noise and sampling bias in small

probability lotteries, thus reaching a decision more quickly.

The small number of samples taken is reflected in the probabilities people experience. This
is illustrated figure 14, panels B through D, which plot distributions of probabilities inferred
from the actual samples a DM observed. For small probability lotteries, subjects experience
a smaller probability than the true one in 66% of cases overall, while getting a correct
picture in some 3.4% of cases. For large probability lotteries this picture is reversed, with
55% of samples over-estimating the true probability, and only 2.2% resulting in a correct
estimate. The asymmetry we see between small and large probabilities suggests that the

larger samples taken for large probabilities result in a more balanced picture.

Nonparametric within-subject results

Here, we replicate the nonparametric between-subject analysis in the paper by presenting
within-subject comparisons wherever this is possible. The descriptions of the figures are

self-contained.
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Figure 15: The GAP: within-subject

Choice proportions by probability for the decision-experience gap: DfD versus DfE. Error bars indicate 1

standard error.
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Figure 16: DfD+forced vs DfD within subject

Choice proportions by probability, within-subject comparison between DfD+forced and DfD. Error bars indicate

1 standard error.

Figures at task level

Here, we show all figures for which we averaged across ¢ at the probability level at a task-

level resolution. The figure descriptioins are self-contained.
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Figure 17: The GAP at the task level (between-subjects)

Choice proportions by task for the decision-experience gap: DfD versus DfE. Error bars indicate 1 standard

€error.
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Figure 18: DfE+forced versus DfE at the task level (between-subjects)

Choice proportions by task for DfE+4forced compared to DfE. This comparison is only possible between-subjects.

Error bars indicate 1 standard error.
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Figure 19: DfD+forced versus DD at the task level (between-subjects)

Choice proportions by task for DfD+forced compared to DfD. Error bars indicate 1 standard error.
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Figure 20: DfD+forced versus DD at the task level (between-subjects)

Choice proportions by task for DfD+forced compared to DfD. Error bars indicate 1 standard error.

Within-subject structural results

This section contains within-subject structural comparisons for those cases where we used
between-subject comparisons in the main text, but within-subject comparisons are possible.

The descriptions of the graphs are self-contained.
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Figure 21: Likelihood-discriminability in DfD vs DfD+forced, within subject

Likelihood-discriminability, v, empirical cumulative distribution function of individual-level posterior means.
Within-subject comparison between DfD and DfD+forced.

F Instructions to Subjects

F.1 Stage 1 Instructions

Subjects in all treatments, were given the following instructions prior to Stage 1.

Instructions: Bonus
Please pay close attention to the following instructions. We will ask you comprehension

questions about the instructions. Anyone who answers these questions correctly the first
time will receive a $0.25 bonus.
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Part 1 Instructions: Digital Bags

1. There will be two Parts to this experiment.

2. Part 1 will consist of several Tasks. In each Task you will choose between two digital
bags -- Bag A and Bag B

3. Each bag contains 20 coins and each coin is worth some amount of money to you as
a bonus.
Bag A Bag B

80% are worth $2.00

100% are worth $1.00
20% are worth $0.00

Example: In the example above, 80% of the coins in Bag A (i.e. 16 coins) are worth
$2, while 20% of the coins (4 coins) are worth $0. On the other hand, 100% of the
coins in Bag B are worth $1.

4. No coin in any bag is worth more than $35.
5. We will randomly digitally draw one coin from one of the two bags (Bag A or Bag
B), and use that coin to determine how much money to add to your bonus. Each coin

in the bag is equally likely to be drawn.

6. Your job is to decide which bag you would like us to randomly draw a coin from for
your payment, by clicking one of the two buttons as in the example below.

Make Your Choice

Choose Bag A Choose Bag B

Example: In the earlier example, if you choose Bag A there is an 80% chance you
earn $2 and a 20% chance you earn $0. However, if you choose Bag B there is a
100% chance you earn $1.
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Please answer the following comprehension questions about the following pair of bags:
Bag A BagB

70% are worth $3.00

100% are worth $2.00
30% are worth $0.00 cArew

If you answer all of these questions correctly on the first try we will pay you a bonus of
$0.25.

In the example above, what is the likelihood (percentage chance) of earning exactly $3 if
you choose Bag A.

0%

30%

70%

100%

In the example above, what is the likelihood (percentage chance) of earning exactly $2 if
you choose Bag A.

0%

30%

70%

100%
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In the example above, what is the likelihood (percentage chance) of earning exactly $3 if
you choose Bag B.

0%
30%
70%

100%

In the example above, what is the likelihood (percentage chance) of earning exactly $2 if
you choose Bag B.

0%
30%
70%

100%

Instructions: Details

1. We will give you a total of 22 tasks in Part 1. In each task, the contents of the bags
will be different.

2. At the end of the experiment, we will randomly select 10% of participants to
actually be paid a bonus based on their choices.

3. If you are selected to be paid a bonus, we will randomly select one of the tasks and
use your choice to determine your bonus.
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F.2 Stage 2 Instructions

In Stage 2, subjects assigned to the DfD treatment were given the following instructions:

Part 2 Instructions

1. The choices in Part 2 will be similar to the choices in Part 1.

2. We will give you a total of 22 tasks in part 2. In each task, the contents of the bags
will be different.

3. At the end of the experiment, we will randomly select 10% of participants to
actually be paid a bonus based on their choices.

4. If you are selected to be paid a bonus, we will randomly select one of the tasks and
use your choice to determine your bonus.

Subjects assigned to DfE or DfE+forced were initially given the following instructions:
Part 2 Instructions
In Part 2 tasks, you will be making the same kind of choices you made in Part 1. However,

unlike in Part 1, in Part 2 we will not describe what is contained in each bag. Instead you
can learn about the contents of the bags by sampling coins from them.

Subjects assigned to DfD+forced or DfD+forced were initially given the following instruc-

tions:

Part 2 Instructions

In Part 2 tasks, you will be making the same kind of choices you made in Part 1. However,
you will also be allowed to sample coins from each bag before making your choices.

After this, subjects in DfE or DfD+free were given the following instructions:
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Part 2 Instructions: Sampling

1.

In this Part, in order to help you make your decision, we will allow you to "Sample"
from each of the bags. We will show you buttons like the ones below. Each time you
click on a button, it will draw one of the coins from the corresponding bag and show
you how much is on it. This won't affect your earnings -- it is just a chance to learn
about each bag.

Sample Each Bag

$2.00
Sample Bag A Sample Bag B

Example: In the example above, you have clicked bag A and the computer randomly
drew a coin worth $2 from it (shown in green).

. You can Sample from each bag as many times as you like. Each time you do, the

computer will "put the coin back in the bag" before you sample again.

. When you are finished sampling, just click on a button like the ones below to make

your real choice (the choice that actually affects your earnings). The computer will
then randomly draw one of the 20 coins from the bag to determine your bonus.

Make Your Choice

Choose Bag A Choose Bag B
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while subjects in DfE+forced or DfD+forced were instead given the following instructions:

Part 2 Instructions: Sampling

1. In this Part, in order to help you make your decision, we will allow you to "Sample"
from each of the bags. We will show you buttons like the ones below. Each time you
click on a button, it will draw one of the coins from the corresponding bag and show
you how much is on it. This won't affect your earnings -- it is just a chance to learn
about each bag.

Sample Each Bag

$2.00

Sample Bag A Sample Bag B

Example: In the example above, you have clicked bag A and the computer randomly
drew a coin worth $2 from it (shown in green).

2. You must Sample from each bag 20 times, drawing each of the 20 coins out of each
bag. Each time you sample, the computer will take the sampled coin out of the bag
before you sample again.

$2.00
Sample Bag A Sample Bag B
sampled 8 / 20 times. sampled & / 20 times.

Example: In the example above, you have sampled 8 times so far from Bag A and 6
times so far from Bag B. You must sample a total of 20 times from each Bag before
you can make your real decision.

3. When you are finished sampling, just click on a button like the ones below to make
your real choice (the choice that actually affects your earnings). The computer will
then randomly draw one of the 20 coins from the bag to determine your bonus.

Make Your Choice

Choose Bag A Choose Bag B

Finally, all subjects were given these instructions prior to the beginning of Stage 2:
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Part 2 Instructions: Details

1. We will give you a total of 22 tasks in part 2. In each task, the contents of the bags
will be different.

2. At the end of the experiment, we will randomly select 10% of participants to
actually be paid a bonus based on their choices.

3. If you are selected to be paid a bonus, we will randomly select one of the tasks and
use your choice to determine your bonus.
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