

The Structure of Stochastic Choice*

Ferdinand M. Vieider¹

¹*RISLaβ, Department of Economics, Ghent University*

First version: 25 November 2025

This version: 21 January 2026

Abstract

Behaviour is intrinsically variable. When individuals repeatedly choose between risky options, their decisions often differ from one occasion to the next. Such stochasticity is typically treated as an obstacle to the identification of stable preferences. Here I argue instead that the structure of stochastic choice itself can be informative about when observed behaviour reflects underlying tastes, and when it does not. I study this question using a lottery choice experiment that varies how easy it is to distinguish between choice options by rescaling monetary payoffs. I document a robust inverse-U shaped relationship between the ease of discrimination and choice variability: as options become harder to distinguish, choices initially become more variable, but eventually stabilize rather than reverting toward stochastic indifference. This pattern contradicts the predictions of standard random utility models, which imply that choice variability should increase monotonically as options become harder to distinguish. More generally, it contradicts models in which increasing noise in internal signals leads behaviour to approach stochastic indifference. Instead, the observed pattern is a direct implication of models in which noisy representations are optimally combined with prior information through Bayesian inference. The results show that choice variability, rather than being a mere obstacle to econometric identification, has diagnostic value for discriminating between competing models of decision-making. More broadly, the findings have important implications for the interpretation of preferences, suggesting that many apparent departures from benchmark models of rational choice reflect structured inference errors rather than stable non-standard tastes.

Keywords: stochastic choice; Bayesian inference; risk-taking

JEL-classification: D81; C91

*Address: Sint-Pietersplein 6, 9000 Ghent, Belgium; ferdinand.vieider@ugent.be. A previous version of this manuscript was circulated under the name “Back to Thurstone? The Psychophysics of Stochastic Choice”. I gratefully acknowledge funding by the Research Foundation–Flanders under grant nr. G008021N: “Causal determinants of preferences”. This paper has benefited greatly from discussions with Larbi Alaoui, Graham Loomes and Songfa Zhong. All errors remain my own.

1 Motivation

Behaviour is intrinsically variable. When individuals repeatedly choose between risky wagers or delayed rewards, their choices often differ from one occasion to the next. Such stochasticity is typically treated as an obstacle to the identification of stable preferences, to be absorbed by a random utility term or averaged away. This paper argues instead that the structure of stochastic choice can be informative about when observed choices are reliable expressions of underlying tastes, and when they are not.

I examine this problem through the lens of recent approaches in economics that model stochastic choice as arising from noise in the evaluation of choice-relevant quantities. A central feature of these models is that both systematic choice patterns and choice variability arise from the same underlying source of noise, rather than from separate preference and error components. Importantly, different ways of handling such noise imply sharply different predictions for how choice variability behaves as options become harder to discriminate. I leverage this structure to use stochastic choice as a diagnostic tool, showing how patterns of choice variability can inform the extent to which observed behaviour reflects stable tastes, or instead arises from systematic mistakes.

Random utility and preference identification. A central difficulty in random utility models is that deterministic preference parameters need not map uniquely into observed choice behaviour. From the opposite vantage point, the same observed stochastic choice patterns can be compatible with multiple underlying taste parameters (e.g., different levels of risk aversion). Figure 1 illustrates this identification problem in a standard expected-utility (*EU*) framework. Following [Apesteguia and Ballester \(2018\)](#), the figure plots the probability of choosing a lottery—assumed to exceed the sure option in expected value—as a function of the coefficient of relative risk aversion.¹

A risk-neutral decision-maker will prefer the lottery to the sure option, since the former has higher expected value. As risk aversion increases, the choice probability of the risky option initially declines, as one would expect. As risk aversion rises further, however, the deterministic expected-utility difference between the lottery and the sure option

¹One interpretation of this plot is as representing a population of decision-makers who face the same objective choice problem and share the same variance of internal noise, but differ in the curvature of their utility functions. While EU and a Probit specification are adopted here for concreteness in the simulation, the qualitative patterns illustrated in the figure are a general feature of random utility models.

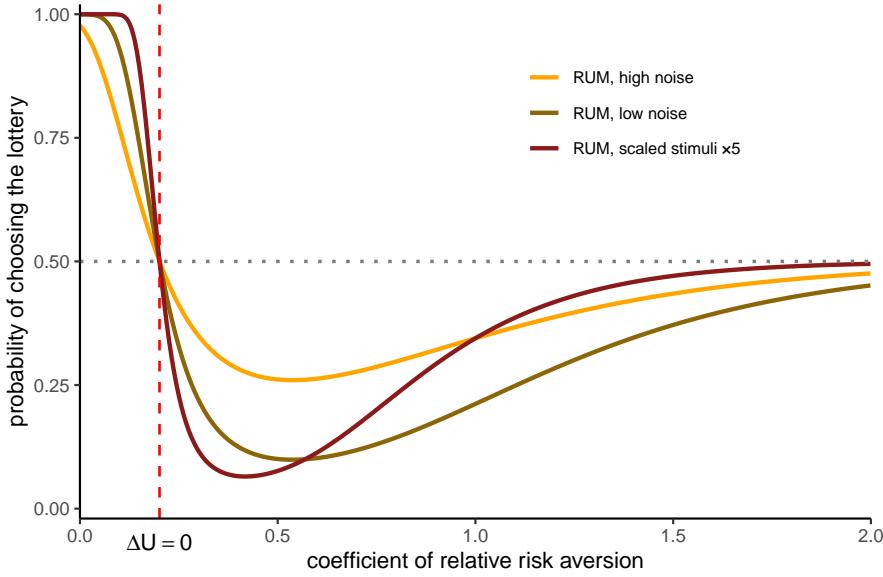


Figure 1: Choice proportion of lottery as a function of risk aversion

The simulations are based on a constant relative risk aversion (CRRA) utility function $u(x) = x^{1-r}$ for $r \neq 1$, and $u(x) = \ln x$ for $r = 1$. Stochastic choice is governed by the difference in random utilities $\tilde{U}(x, p) = p u(x) + \epsilon_x$ and $\tilde{U}(c, 1) = u(c) + \epsilon_c$, where ϵ_x and ϵ_c capture unobserved disturbances. Assuming $\epsilon_x, \epsilon_c \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$ implies $\epsilon \triangleq \epsilon_x - \epsilon_c \sim \mathcal{N}(0, 2\sigma^2)$, yielding the Probit choice rule $\Pr[(x, p) \succ c] = \Phi\left(\frac{p u(x) - u(c)}{\sqrt{2}\sigma}\right)$. Choices are generated for a baseline comparison between (60, 0.2) and (8, 1). In the “low noise” simulation, $\sigma = 1$, and in the “high noise” simulation $\sigma = 2$. The scaled-stimuli simulation uses the same noise level as the high-noise case, but multiplies all outcomes by a factor of five, corresponding to a choice between (300, 0.2) and (40, 1). ΔU indicates the difference in deterministic utilities, $U(x, p) - U(c, 1) = pu(x) - u(c)$. The qualitative non-monotonicity does not depend on either the EU or the normality assumptions, but reflects a general feature of the interaction between utility curvature and additive noise.

continues to shrink, eventually becoming small relative to the variance of the stochastic disturbance. At that point, random utility disturbances dominate the deterministic utility difference, discriminability between the options deteriorates, and choice probabilities drift back toward stochastic indifference. This non-monotonic relationship between risk aversion and choice probabilities is a well-known implication of random utility models (Wilcox, 2011; Apesteguia and Ballester, 2018): higher levels of risk aversion need not translate into systematically higher choice proportions of the safer option. This results in an identification problem—the mapping between choices and tastes is not unique.

The same non-monotonicity in stochastic choice can arise even when preferences and noise are held fixed (i.e. for one and the same decision-maker) but choice primitives are scaled. For illustration, Figure 1 also plots choice probabilities for a rescaled version of the same choice problem, in which all outcomes are multiplied by a constant factor. Under constant relative risk aversion, such rescaling leaves deterministic preferences unchanged. Nevertheless, it alters the discriminability of the options relative to the fixed

noise level, leading to markedly different stochastic choice behaviour. This illustrates that the identification problem can arise even for a given decision-maker, as a function of how the range and composition of choice stimuli interact with a fixed level of noise.²

Interpreting Stochastic Choice in Random Utility Models. Random utility models are typically interpreted as reduced-form representations of choice behaviour: They describe statistical regularities in observed choices without, by themselves, pinning down a unique behavioural or structural interpretation. As a result, the identification failure described above does not carry a single implication—the same stochastic choice patterns can be understood in different ways, depending on how the random utility formulation is interpreted.

One interpretation views these patterns primarily through an econometric lens ([Wilcox, 2011](#); [Apesteguia and Ballester, 2018](#)). In this view, stochasticity is treated as a disturbance that obscures underlying deterministic preferences, but carries little behavioural content of its own. The goal is therefore to recover the preference parameters that would govern choice in the absence of noise. [Apesteguia and Ballester \(2018\)](#) show that restoring monotonicity between a deterministic expected utility representation and its stochastic implementation can substantially affect inferred tastes. In particular, they demonstrate that standard random utility specifications may understate risk aversion for decision-makers with a high frequency of safe choices. More generally, inferences about preferences under the maintained assumption of expected utility depend on how the mapping from deterministic utilities to stochastic choice behaviour is specified.

An alternative interpretation treats the stochastic choice patterns illustrated above as reflecting features of behaviour itself. From this perspective, stochasticity operates *at the moment of choice*, and can generate systematic deviations from deterministic benchmark models describing a decision-maker’s stable tastes. Departures from expected utility are then interpreted as arising from errors or imprecision in the evaluation of utilities, rather than as evidence of stable non-standard preferences. For instance, [McGranaghan et al. \(2024\)](#) argue that common ratio effects observed in binary choice are logically dissociated from underlying preference representations. By comparing behaviour across different elicitation methods—binary choices and certainty equivalents—they show that

²Analogous reversions toward stochastic indifference can also arise at very small stakes, which may be hard to discriminate even at low levels of risk aversion.

observed choice patterns need not admit a unique preference-based interpretation. This raises broader questions about the extent to which stable preferences can be inferred from binary choice data alone.

Stochastic Choice from Noisy Representations. Decision-makers do not have direct access to objective quantities governing the choice problem. To guide behaviour, choice primitives must thus first be internally evaluated or encoded—a step that is inherently noisy. Recent work in economics has therefore modelled stochastic choice as arising from noise in the internal representations of choice-relevant quantities. As a consequence of this modelling approach, both average choice patterns and choice variability emerge endogenously from stochasticity in these internal representations. Studying stochastic choice through the lens of such models has two key advantages. First, these models provide stylized representations of the mechanisms generating choice behaviour, and therefore admit a generative—i.e. causal—interpretation. As a result, their predictions are behavioural in nature, rather than reduced-form, as in standard random utility models. Second, because both systematic choice patterns and stochastic variation originate from the same source of noise, these models impose nontrivial structure on stochastic choice itself. This structure will be central to the analysis that follows.

Models proposed within this general framework fall into two sharply distinct classes, which differ in how noisy internal representations are transformed into choice. One class of models addresses noise primarily at the *encoding* stage, by optimally shaping internal representations given environmental constraints (usually given by the statistical distribution of choice-relevant quantities). A second class of models also exploits information about environmental distributions, but in a different way: prior statistical knowledge is used to optimally *decode* noisy representations in order to infer the underlying choice primitives that generated them. Although these two ways of dealing with noise are not in contradiction—and may well coexist in practice—existing models typically emphasize one or the other. As a result, the two model classes imply sharply different relationships between discriminability and choice variability.

Encoding-based models address representational noise at the encoding stage, by optimally shaping internal representations given the structure of the environment. This class includes evolutionary models such as those proposed by Robson (2001a;b) and Netzer (2009), the Decision-by-Sampling model of Stewart et al. (2006), as well as the

efficient coding approach of [Frydman and Jin \(2022\)](#). Although these models differ in their assumed sources of internal noise and in the optimality criteria used to derive representational codes, they share a common implication for stochastic choice: As the discriminability between options declines, choices are predicted to become increasingly variable, approaching stochastic indifference in the limit. In this respect, encoding-based models share a qualitative implication with standard random utility models. This prediction follows directly from the emphasis these models place on the informativeness of internal signals: when internal representations of choice options carry relatively little signal about their relative attractiveness, responses necessarily become more random.

Decoding-based models, by contrast, rely on Bayesian inference to mitigate the impact of representational noise. Noisy internal signals are weighted in proportion to their informativeness: unreliable or extreme signals are discounted and pulled toward prior expectations, yielding inferences that optimally trade off signal and prior information. This class includes, for example, the model of small-stakes risk aversion proposed by [Khaw et al. \(2021\)](#). A central implication of this process is regression to the mean of the prior. As signals become less reliable, they receive progressively less weight in decisions, which are instead increasingly guided by prior expectations. This stabilizing property has sharp implications for stochastic choice. Rather than increasing monotonically, choice variability is predicted to peak at intermediate levels of discriminability and to decline again when noise overwhelms the signal. In other words, Bayesian decoding predicts an inverse-U shaped relationship between discriminability and stochastic choice—the opposite of the prediction made by encoding-based models.

Testing Predictions of Encoding and Decoding Models. I test the contrasting predictions of encoding- and decoding-based models by systematically manipulating outcome discriminability in a lottery choice experiment. The key manipulation consists in varying the numerical scale in which monetary outcomes are denominated, by mapping payoffs into experimental currency units. As shown by [Garagnani and Vieider \(2025\)](#), such scale transformations can systematically shift decision noise in predictable ways. [Oprea and Vieider \(2025\)](#) use an analogous manipulation to demonstrate how changes in numerical scale affect sensitivity to probabilities, in line with the predictions of [Vieider \(2024b\)](#). By employing a wide range of exchange rates between GBP and experimental currency units—specifically, mappings of 1:1, 1:100, and 1:10,000—I generate substantial

variation in outcome discriminability while holding underlying preferences fixed. This design induces controlled changes in encoding noise, allowing me to directly test how choice variability responds as discriminability deteriorates.

The experimental manipulation yields a clear and robust pattern. Outcome discriminability varies systematically across the different payoff scales, confirming that the manipulation is successful and—importantly—that it generates substantial variation in the signal-to-noise ratio of internally represented choice primitives. As outcome discriminability is reduced by rescaling monetary payoffs, choice variability initially increases. Once signals in outcome representations become dominated by noise, however, choice variability begins to decline again. In other words, stochastic choice exhibits a pronounced inverse-U shaped relationship with discriminability. Importantly, I show that this pattern emerges both in econometric tests and in nonparametric analyses designed to provide a fully model-free assessment.

Implications for interpretations of preferences. The key finding of an inverse-U shaped relationship between outcome discriminability and choice variability is difficult to reconcile with encoding-based models, which predict that choice variability should increase monotonically as discriminability deteriorates. By contrast, it is a direct implication of decoding-based models, in which noisy internal signals are optimally combined with prior information. The result therefore bears directly on a foundational interpretive question: when should stochastic choice be treated as revealing stable underlying tastes, and when should it instead be understood as reflecting decision error?

First, the stabilizing effect implied by Bayesian decoding is not achieved by modifying the stochastic specification of a deterministic choice model, as in standard random utility approaches. Instead, monotonicity in choice behaviour follows as an implication of optimal inference applied to noisy representations. In this sense, decoding-based models provide a resolution to the identification problems highlighted by [Wilcox \(2011\)](#) and [Apesteguia and Ballester \(2018\)](#) that operates at a conceptually different level: it is not the mapping from preferences to choice that is altered, but the process by which noisy internal signals are translated into decisions. A perhaps paradoxical implication of this insight is that behaviour which appears most consistent with benchmark models such as expected utility need not be the most stable or least noisy.

Second, the results are also at odds with behavioural interpretations of the random utility model that treat increased choice variability at low levels of discriminability as obscuring otherwise stable underlying tastes. In this view, as options become harder to discriminate, choices are expected to revert toward stochastic indifference in regions of low discriminability. In this respect, the random utility model shares the qualitative implication of encoding-based models: choice variability is predicted to increase monotonically as discriminability deteriorates. The experimental evidence presented here shows that this implication does not hold. When outcome representations become sufficiently noisy—and thus when choice options are hardest to discriminate—behaviour does not revert toward stochastic indifference. Instead, choice variability declines and behaviour stabilizes. This indicates that reversion toward stochastic indifference at low discriminability is not a general behavioural response to noise.

Even though the stochastic choice implications of the random utility model do not hold, the conclusions of the paper nonetheless converge with recent work emphasizing the limits of inferring stable tastes from choice data alone (Nielsen and Rehbeck, 2022; de Clippel et al., 2024; McGranaghan et al., 2024). Within the logic of the Bayesian inference framework, deviations from EU benchmarks arise as the endogenous consequence of noisy internal representations of choice-relevant quantities. As a result, departures from economic rationality may manifest as small-stakes risk aversion, probability distortions, or distortions in intertemporal choice. The crucial distinction between standard random-utility approaches and Bayesian decoding models thus lies in the structure of the noise, rather than in their deeper normative conclusions.³ As a result, deviations from expected utility can be understood as mistakes—but as mistakes generated by structured inference under noise, not as the outcome of unstructured stochastic disturbances.

Contribution and Relation to the Literature. This paper builds on a growing literature that models decision-making as arising from noisy representations of choice-relevant quantities. Khaw et al. (2021) propose and test a model in which small-stake risk aversion emerges from noise in the representation of choice primitives. Several papers independently propose explanations of probability weighting as an outgrowth of noisy representations (Zhang et al., 2020; Enke and Graeber, 2023; Frydman and Jin, 2023;

³Bayesian decoding models remain normative conditional on noisy internal representations: given the information available to the decision-maker, behaviour is optimal in the sense of Bayesian inference. In this sense, the inference process is optimal given the noise in internal representations.

Oprea, 2024; Oprea and Vieider, 2024; Vieider, 2024b). Similar principles have been applied to explain deviations from exponential discounting benchmarks (Vieider, 2023; Enke et al., 2024; Oprea and Vieider, 2025). A closely related contribution is Natenzon (2019), who proposes a Bayesian inference model of stochastic choice to explain attraction and compromise effects. While several of these papers propose choice rules grounded in Bayesian inference, their empirical focus lies on average choice patterns or specific anomalies, rather than on the structure of stochastic choice itself.

The paper is also closely related to a literature emphasizing the limits of inferring preferences from observed choice behaviour, building on earlier behavioural interpretations of stochastic choice (Ballinger and Wilcox, 1997; Loomes, 2005). Nielsen and Rehbeck (2022) allow subjects to choose whether to commit to rational-choice axioms and study how deviations from these principles are reconciled in subsequent choices, with the aim of distinguishing tastes from mistakes. McGranaghan et al. (2024) examine common ratio violations using both binary choices and certainty equivalents, and show that such violations in binary choice can arise even under expected utility when stochastic choice is taken into account. de Clippel et al. (2024) compare behaviour in settings with experimentally induced demand to decision-making under risk, finding strong correlations across contexts that suggest a prominent role for heuristics or as-if rationality rather than stable utility maximization. My results are closely related to this literature in that they likewise support the view that observed choices may reflect mistakes. The contribution here is to focus on the structure of choice variability itself as a diagnostic tool.

Finally, the paper is related to work that studies stochastic choice using additional observables beyond choice itself. A literature in psychology emphasizes the role of decision times and their relationship to processes of evidence accumulation (Krajbich et al., 2010), with related applications to decision-making under risk (Busemeyer and Townsend, 1993; Zilker and Pachur, 2022). Recent work in economics has similarly leveraged response times to improve the identification of choice models and stochastic components (Alós-Ferrer et al., 2021), or to enhance out-of-sample prediction of risky choices (Alós-Ferrer and Garagnani, 2024). The present contribution is orthogonal to this literature, in that it focuses on the structure of choice variability across tasks, without relying on auxiliary process measures.

2 Encoding-based model of stochastic choice

In a random utility model (*RUM*), discriminability between options and stochasticity in choice are modelled independently, and the model remains silent about the cognitive origin of the noise. As a result, the same observed choice behaviour can be attributed either to changes in preferences or to changes in unobserved disturbances, with no principled way to adjudicate between the two. This ambiguity suggests examining stochastic choice from the perspective of explicitly generative models. In such models, both discriminability and stochastic choice arise endogenously from assumptions about how noise enters internal representations of choice stimuli, creating a link between discrimination and stochasticity.

2.1 The psychophysics of noisy internal representations

The origin of the random utility model can be traced to [Thurstone \(1927a;b\)](#). Thurstone developed his framework to model discrimination as the outcome of noisy internal representations, building on earlier work by Weber and Fechner. I describe this framework here not for historical reasons, but because its core equations provide a common blueprint for the stochastic choice predictions of the models examined in this paper.

Consider two objects, denoted x and c for coherence with the discussion above. In Thurstone's original examples these might correspond to two physical weights, with the task being to judge which object is heavier. For concreteness, suppose that $x > c$. Thurstone posits that physical magnitudes are mapped into *internal psychophysical representations*, and that these representations are inherently noisy. Let the internal representations of x and c be denoted by r_x and r_c , respectively. His framework assumes

$$r_x = f(x) + \varepsilon_x, \quad r_c = f(c) + \varepsilon_c,$$

where $f(\cdot)$ is a deterministic psychophysical mapping and ε_x and ε_c are stochastic disturbances. Throughout, I assume that representational noise is Gaussian and independent across objects,⁴ with $\varepsilon_x \sim \mathcal{N}(0, \sigma_x^2)$ and $\varepsilon_c \sim \mathcal{N}(0, \sigma_c^2)$.⁵

⁴I maintain this assumption of independence here and throughout. Note, however, that independence is not required: [Thurstone \(1927a\)](#) explicitly discusses a version of the model with correlated noise. Such correlations may improve predictions in certain contexts; see [Natenzon \(2019\)](#) for a prominent example.

⁵A key conceptual point—often misunderstood in later economic applications—concerns the role of the normality assumption. For Thurstone, the Gaussian distribution does *not* describe the distribution

Given this structure, Thurstone's *law of comparative judgment* takes the form

$$\Pr(r_x - r_c > 0) = \Phi\left(\frac{f(x) - f(c)}{\sqrt{\sigma_x^2 + \sigma_c^2}}\right),$$

where $\Pr(r_x - r_c > 0)$ denotes the probability of correctly identifying the heavier object (in the running example) on any given trial, and $\Phi(\cdot)$ is the standard normal cumulative distribution function. From a purely formal point of view, the standard Probit specification of a random utility model is obtained by assuming homoscedastic noise ($\sigma_x = \sigma_c \triangleq \sigma$) and by replacing the psychophysical mapping with a utility-based one, $f(x) = U(x, p)$ and $f(c) = U(c, 1)$.

Notwithstanding this formal similarity, the key difference is that in Thurstone's framework both discriminability in the numerator and judgment noise in the denominator arise jointly from noisy internal representations. Judgment accuracy is therefore governed by two components: the difference between the internal codes, $f(x) - f(c)$, and the precision of these codes, captured by the inverse of $\sigma_x^2 + \sigma_c^2$. Larger differences in physical attributes (as mapped through $f(\cdot)$) and more precise internal representations yield more accurate judgments. Conversely, stimuli that lie close together in psychophysical space will be discriminated unreliably: even when $x > c$, judgment reversals occur with positive probability.

2.2 Encoding-based models of stochastic choice

Thurstone's work was concerned with the discrimination of physical attributes. Extending this structure to economic choice problems—such as decisions under risk—requires introducing subjective valuations or tastes. Given subjective tastes, the relationship between discriminability and stochastic choice becomes substantially more complex, raising questions about how tastes can be separated from variability in observed behaviour. I therefore turn to models in which the allocation of cognitive resources—and hence the structure of representational noise—is endogenously tied to the decision environment. These models provide a natural testing ground for how introducing tastes interacts with discrimination and stochastic choice. I begin with two prominent approaches developed

of external physical stimuli such as x and c . Rather, it reflects an assumption about the distribution of *internal representational noise*. Normality is therefore a property of the encoding process, not of the environment itself.

for decisions under risk: the pioneering Decision-by-Sampling model of [Stewart et al. \(2006\)](#), and the efficient-coding account developed by [Frydman and Jin \(2022\)](#).

Decision-by-Sampling (DbS) models subjective value as arising from comparisons of the stimulus to a finite sample of draws from memory. For continuity with the previous discussion, I focus only on outcome encoding (probability encoding is analogous). Let the environmental distribution of outcomes stored in memory be F . When the decision maker evaluates an outcome x , she compares it to N samples from memory, Y_1, \dots, Y_N , drawn i.i.d. from F . The internal representation of x is then its empirical rank,

$$r_x = \frac{1}{N} \sum_{i=1}^N \mathbf{1}\{x > Y_i\}.$$

This construction provides a sampling-based microfoundation for Thurstone's internal representations. Conditional on x , the indicators $\mathbf{1}\{x > Y_i\}$ are Bernoulli random variables with success probability $F(x)$. By the law of large numbers, r_x converges to $F(x)$ as N goes to infinity. For finite N , sampling variability implies that

$$r_x = F(x) + \varepsilon_x, \quad \varepsilon_x \sim \mathcal{N}\left(0, \frac{F(x)[1-F(x)]}{N}\right),$$

where the approximate normality of ε_x follows from the central limit theorem applied to the sum of N Bernoulli trials (cf. [Casella and Berger, 2024](#), ch. 5).

Evaluating a lottery (x, p) against a sure payoff c yields a stochastic choice rule of the familiar Probit form:

$$\Pr[(x, p) \succ c] = \Phi\left(\frac{pF(x) - F(c)}{\sqrt{\sigma_x^2 + \sigma_c^2}}\right),$$

where $\sigma_x^2 \triangleq \frac{F(x)[1-F(x)]}{N}$ and $\sigma_c^2 \triangleq \frac{F(c)[1-F(c)]}{N}$. This yields the Thurstone discriminability model as a special case, but with rank in memory replacing physical intensity, and with binomial sampling variance replacing the arbitrary Gaussian noise term of the random utility Probit.

The stochastic-choice implications of this representation follow directly from the properties of the sampling variance. When outcomes fall into sparsely populated regions of the

environmental distribution F , they become difficult to discriminate: small differences in stimulus magnitude translate into only weak differences in expected rank. At the same time, the binomial sampling variance remains substantial. As a result, the signal-to-noise ratio in the internal representations deteriorates, and sampling noise increasingly dominates the comparison of internal values. Because sampling noise is the sole source of stochasticity in the model, this implies that choice probabilities drift back toward stochastic indifference as discriminability declines. The predicted pattern mirrors the non-monotonic stochastic-choice implications of the RUM discussed above.

Efficient coding and stochastic choice. Efficient coding is a foundational concept in neuroscience, describing how scarce neural resources optimally adapt to the statistical structure of stimuli in the environment (Barlow, 1961; Laughlin, 1981). Closely related ideas have long been applied to decision making, including early evidence-accumulation models of choice under risk (Busemeyer and Townsend, 1993). More recently, efficient-coding principles have been formalized in models of risky choice, most prominently in the efficient-coding account developed by Heng et al. (2020) and adapted to decision making under risk by Frydman and Jin (2022). Here, I focus on this latter application.

Each attribute of a lottery—such as the prize x in (x, p) or the sure amount c —is internally represented by a noisy population code. In the efficient-coding framework of Frydman and Jin (2022), a stimulus x is encoded by a population of n binary neurons, each firing independently with probability $\theta_X(x)$; similarly, c elicits firing probability $\theta_C(c)$. The internal codes are the resulting spike counts, $r_x = \sum_{i=1}^n s_i$ and $r_c = \sum_{i=1}^n t_i$, with $s_i \sim \text{Bernoulli}(\theta_X(x))$ and $t_i \sim \text{Bernoulli}(\theta_C(c))$. This, in turn, implies that r_x and r_c will follow binomial distributions governed by probabilities $\theta_X(x)$ and $\theta_C(c)$.

Efficient coding determines the functions $\theta_X(\cdot)$ and $\theta_C(\cdot)$ by optimally allocating coding precision across the environmental distributions F_X and F_C . This induces a smooth, non-linear compression of the stimulus magnitudes. The functions $v_X(x)$ and $v_C(c)$ denote the deterministic posterior means implied by this coding scheme.⁶ Because the underlying spike counts are binomial, the decoded values inherit approximately Gaussian noise

⁶Although framed in Bayesian terms, the efficient-coding model of Frydman and Jin (2022) effectively behaves as a likelihood-based model at the level of choice. The assumed uniform prior is an improper prior in Bayesian statistics, and on a bounded stimulus domain it implies that the posterior is proportional to the likelihood. As a result, posterior uncertainty is not propagated into the decision stage, and Bayesian regression to the mean does not impact the stochastic choice rule.

via a standard delta-method argument (cf. [Casella and Berger, 2024](#), ch. 5). The internal codes can therefore be written in the same form as in DbS and Thurstone:

$$r_x = v_X(x) + \varepsilon_x, \quad r_c = v_C(c) + \varepsilon_c,$$

with $\varepsilon_x \sim \mathcal{N}(0, \sigma_X^2(x))$ and $\varepsilon_c \sim \mathcal{N}(0, \sigma_C^2(c))$, where $\sigma_X^2(x) \triangleq n\theta_X(x)[1 - \theta_X(x)]$ and $\sigma_C^2(c) \triangleq n\theta_C(c)[1 - \theta_C(c)]$.⁷ Defining the associated decision-stage values as $V(x, p) = p v_X(x)$ and $V(c, 1) = v_C(c)$, yields a choice probability of the Thurstone-RUM form:

$$\Pr[(x, p) \succ c] \approx \Phi\left(\frac{p v_X(x) - v_C(c)}{\sqrt{\sigma_X^2(x) + \sigma_C^2(c)}}\right),$$

where $\sigma_X^2(x)$ and $\sigma_C^2(c)$ reflect the efficient-coding-induced neural noise.

The efficient-coding model thus fits naturally into the classical random-utility framework and shares the qualitative stochastic-choice implications of Decision-by-Sampling. As outcomes move into sparsely populated regions of the environmental distribution, optimal representational compression maps given objective differences into very small differences in decoded values. Discriminability therefore deteriorates: changes in stimulus magnitude translate into only weak differences in internal representations, while representational noise remains substantial. As a result, the signal-to-noise ratio in internal representations falls, and stochastic fluctuations increasingly dominate the comparison of values. This implies that choice probabilities drift toward stochastic indifference as discriminability declines, mirroring the implications of Decision-by-Sampling and the random-utility model.

The models discussed above are not exhaustive. For instance, the evolutionary accounts of [Robson \(2001a;b\)](#) and [Netzer \(2009\)](#) provide prominent examples of encoding-based approaches. In these models, decision-makers face potentially infinitely many consumption levels but can assign utility only in discrete steps, reflecting cognitive limits akin to Weber's just-noticeable differences. From an evolutionary perspective, optimality then requires allocating utility jumps in proportion to the probability density of consumption

⁷The variance expressions in Decision-by-Sampling and efficient-coding models differ only by normalization. In Decision-by-Sampling, internal representations correspond to normalized ranks, yielding a variance proportional to $F(x)[1 - F(x)]/N$. In efficient-coding models, representations are typically written in terms of unnormalized sample counts or neural activity, leading to a variance proportional to $n\theta_X(x)[1 - \theta_X(x)]$. Both formulations arise from Binomial sampling and are equivalent up to scale.

opportunities in the environment, with the precise criterion depending on whether one models the minimization of decision errors (Robson, 2001a;b) or the maximization of evolutionary fitness (Netzer, 2009). Although formulated at a more abstract level, these models yield the same qualitative stochastic-choice implications as the accounts considered above: as discriminability deteriorates in low-density regions of the environment, choice probabilities revert toward stochastic indifference.

3 Bayesian inference and stochastic choice

I next examine Bayesian inference models. In contrast to encoding-based accounts, stochastic choice in this class arises primarily at the *decoding* stage: noisy internal representations are not acted upon directly, but are combined with prior knowledge to form posterior beliefs. A central implication of Bayesian decoding is regression toward prior expectations. As internal signals become less informative, posterior beliefs place increasing weight on the prior, leading behaviour to stabilize rather than becoming arbitrarily noisy. To isolate this mechanism as transparently as possible, I will assume homoscedastic coding errors and abstract from optimal adaptation of encoding noise across the stimulus space. This restriction is not inherent to Bayesian models; it serves to highlight the distinctive stochastic-choice implications generated by inference itself.

3.1 Bayesian inference restores stochastic monotonicity

Khaw, Li and Woodford (2021) (henceforth: *KLW*) develop a neural model of lottery evaluation in which discriminability between outcomes and stochasticity in choice arise jointly from noisy numerical magnitude perception combined with Bayesian inference. Outcomes x are encoded as

$$r_x = \ln(x) + \varepsilon_x, \quad \varepsilon_x \sim \mathcal{N}(0, \nu^2).$$

This fits the Thurstone template $r_x = f(x) + \varepsilon_x$ with $f(x) = \ln(x)$, which can be viewed as a neural implementation of Fechner's law.⁸

The model diverges from the approaches considered so far by introducing a second stage

⁸The Gaussian noise term is motivated by the tuning curves of number neurons, which exhibit approximately constant variance in log space (Dehaene, 2003).

that leverages Bayesian decoding to mitigate perceptual noise. The decision maker is assumed to hold a prior belief over log magnitudes, $\ln(x) \sim \mathcal{N}(\mu, \tau^2)$,⁹ and to decode the noisy internal code r_x using Bayes' rule. The resulting posterior mean serves as the internal value representation of x and is given by

$$m_x \triangleq \mathbb{E}[\ln(x) | r_x] = \alpha r_x + (1 - \alpha) \mu, \quad \alpha \triangleq \frac{\tau^2}{\tau^2 + \nu^2}.$$

The posterior mean is a weighted average of the noisy signal and the prior mean, where the weight on the signal r_x , α , depends on the relative reliability of the two sources of information. When coding noise is low ($\nu^2 \rightarrow 0$), $\alpha \rightarrow 1$ and the posterior closely tracks the true stimulus (since $\mathbb{E}[r_x] = \ln(x)$). Conversely, when coding noise is high ($\nu^2 \rightarrow \infty$), $\alpha \rightarrow 0$ and the posterior collapses toward the prior mean. This Bayesian decoding rule is optimal in the sense that it minimizes the mean squared error across repeated trials (see, e.g., [Bishop, 2006](#); [Ma et al., 2023](#)).

Because m_x is a linear transformation of the noisy code r_x , it remains stochastic even after Bayesian decoding. Conditional on x , the expectation and variance of the posterior mean m_x across repeated presentations of the same outcome take the form

$$\mathbb{E}[m_x | x] = \alpha \ln(x) + (1 - \alpha) \mu, \quad \mathbb{V}[m_x | x] = \alpha^2 \nu^2 = \tau^2 \alpha (1 - \alpha),$$

where the second equality on the right follows from the definition of α . Thus, while Bayesian decoding attenuates perceptual noise, it does not eliminate variability in internal value representations. Importantly, the variance of the decoded representation depends non-monotonically on discriminability: it is small when α is close to 1 (the signal dominates), also small when α is close to 0 (the prior dominates), and maximized at the intermediate point $\alpha = \frac{1}{2}$ where prior and signal receive equal weight. This inverted-U relationship between representational variability and discriminability is the key property that distinguishes Bayesian decoding from the encoding-based accounts discussed above.

To connect this representational structure to stochastic choice, it is useful to write the

⁹Under Gaussian noise in log space, a normal prior over $\ln(x)$ is the conjugate representation of beliefs formed through repeated noisy inference. Importantly, this does not require the true environmental distribution of x to be log-normal. Rather, it reflects a reduced-form characterization of subjective beliefs that arise when a decision-maker learns about magnitudes through noisy internal representations.

implied decision rule for a simple binary lottery. Following [Khaw et al. \(2021\)](#), consider a lottery (x, p) evaluated against a sure payoff c . The decision maker compares the posterior mean of the sure amount, m_c , to the sum of the log-probability and posterior log-value of the risky payoff, $\ln p + m_x$. Under the assumptions above (and treating probabilities as encoded without noise), this yields the probit choice rule

$$\Pr[(x, p) \succ c] = \Phi\left(\frac{\ln p + \alpha \ln\left(\frac{x}{c}\right)}{\sqrt{2}\alpha\nu}\right). \quad (1)$$

Equation (1) has the overall form of a probit random-utility model, but with a crucial difference: both the mean perceptual difference in the numerator and the variability in the denominator are jointly determined by coding noise ν^2 and prior variance τ^2 through the discriminability parameter $\alpha = \tau^2/(\tau^2 + \nu^2)$.

This structure has two key implications for our present purposes. First, as emphasized by [Khaw et al. \(2021\)](#), outcome discriminability α plays the role of an as-if risk-attitude parameter: holding (μ, τ^2) fixed, increasing coding noise ν^2 lowers α , thereby increasing apparent risk aversion. Second—and more importantly for this paper—the model makes a non-trivial prediction about stochastic choice. Holding prior variance τ^2 fixed, increasing coding noise ν^2 initially raises choice variability by pushing α toward $\frac{1}{2}$ (when $\nu = \tau$), where representational variance is maximized. Beyond this point, further increases in coding noise reduce choice variability, as posterior beliefs become increasingly dominated by the prior. In the limit as $\alpha \rightarrow 0$, the posterior collapses onto the prior mean and choices become more, not less, coherent.

To make the relationship between discriminability and decision noise explicit, Figure 2 plots the implied decision-noise term $\tau \sqrt{2\alpha(1-\alpha)}$ as a function of outcome discriminability α . Panel A displays the characteristic inverted-U shape: decision noise is small when outcomes are either highly discriminable ($\alpha \approx 1$) or strongly dominated by prior expectations ($\alpha \approx 0$), and is maximized at the intermediate point $\alpha = \frac{1}{2}$ where prior and signal receive equal weight.

Panel B illustrates the corresponding stochastic-choice implications. In contrast to the random-utility case examined above, the predicted choice probability of the risky option now decreases monotonically in coding noise ν (which, for fixed τ , directly governs as-if utility curvature through α). This monotonicity arises precisely because decision noise

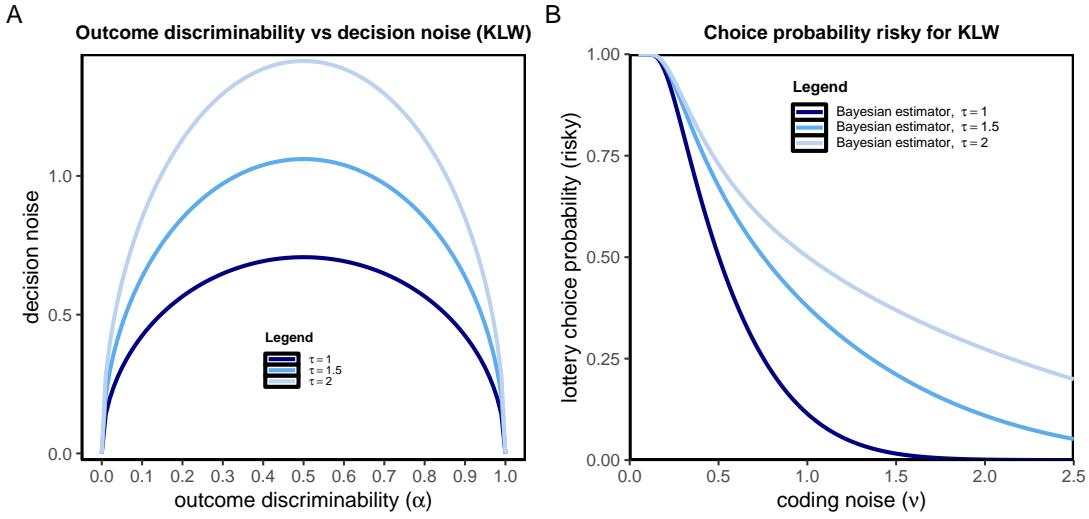


Figure 2: Stochastic choice predictions under Bayesian inference (KLW)

The figure illustrates the effect of Bayesian inference on stochastic choice behaviour. Panel A shows the relationship between discriminability α on the horizontal axis, and decision noise $\sqrt{2\nu}\alpha$ on the vertical axis. Decision noise is highest at $\alpha = \frac{1}{2}$, and declines for smaller and larger values of α . Panel B plots coding noise ν on the horizontal axis against predicted choice proportions of the superior risky option on the vertical axis. As ν increases as-if risk aversion $1 - \alpha$ also increases; nevertheless, the choice probability of the higher-EV risky option declines monotonically.

declines again at low discriminability: Bayesian regression toward the prior prevents noise from overwhelming the as-if utility difference in the numerator. As a result, the predicted choice probability of the lottery declines monotonically with ν . The slope of this decline depends on the prior standard deviation τ , with larger values of τ producing both higher decision noise (panel A) and a slower decrease in choice probabilities (panel B).

This stands in sharp contrast to the likelihood-based models discussed above. In the classical random utility model, discriminability depends solely on the distance between deterministic utilities: choices become noisy when utility differences are small, and converge toward indifference as curvature compresses those differences. In Decision-by-Sampling and efficient-coding models, by contrast, discriminability is shaped by the mapping from objective magnitudes to internal representations, which reflects the statistical structure of the environment. Regions of the stimulus space in which internal codes are densely packed—or in which the mapping flattens—exhibit low discriminability, even when objective differences are substantial. The Bayesian inference model departs from both frameworks. Because Bayesian regression to the mean suppresses noise when signals are uninformative, choice behaviour stabilizes as α becomes small, restoring a form of stochastic monotonicity that the other generative models do not predict.

A subtle but important point concerns the behaviour of the prior variance τ^2 . Within the logic of the KLW framework the prior is not externally fixed: it must itself be learned from noisy posterior inferences. Because the organism infers environmental statistics through the same noisy perceptual channel used for individual decisions, the precision of the learned prior will naturally depend on the coding noise ν . For the behavioural predictions developed above, however, only the ratio ν/τ matters, or equivalently, the signal-to-noise ratio $\alpha = \tau^2/(\tau^2 + \nu^2)$. Thus, whenever coding noise increases more rapidly than the learned prior variance—or when individuals differ in their signal-to-noise ratios—the model robustly yields maximal decision variability at $\alpha = \frac{1}{2}$ and stabilization of choices in the high-noise regime. This observation will be important for interpreting the econometric flexibility of the model in the next subsection.

3.2 Empirical test strategy

Figure 2 highlights a second feature of the KLW framework that informs the model-based tests proposed below (which are complemented by nonparametric tests that are entirely model-free). For a given prior standard deviation τ , variation in coding noise ν jointly determines as-if utility curvature (through $\alpha = \tau^2/(\tau^2 + \nu^2)$) and decision noise $\tau\sqrt{2\alpha(1-\alpha)}$, generating the characteristic inverted-U relation between them. Thus, within the KLW model with fixed τ , risk attitudes and choice variability are tightly linked: changing ν necessarily affects both discriminability and decision noise in a specific way.

From a purely econometric perspective, however, ν and τ are free parameters. This flexibility allows τ to co-move with ν in such a way that α remains approximately constant while decision noise, $\tau\sqrt{2\alpha(1-\alpha)}$, increases or decreases. More generally, by allowing both ν and τ to vary across individuals or treatments, an econometric estimation of KLW probit equation can dissociate as-if risk attitudes (captured by α) from response variability. In particular, the model can generate monotonic increases in choice variability as α decreases if overall representational noise rises sufficiently fast. In this case, decision noise can increase even as discriminability falls, generating behaviour observationally equivalent to higher risk aversion under additive noise. This limiting case has a natural interpretation. The first stage of the KLW framework corresponds to a homoscedastic version of the Thurstone model. As $\tau \rightarrow \infty$, the prior variance becomes unbounded,

effectively yielding an improper (flat) prior. In this limit, the posterior becomes proportional to the likelihood, and Bayesian decoding collapses to a purely encoding-based estimator.

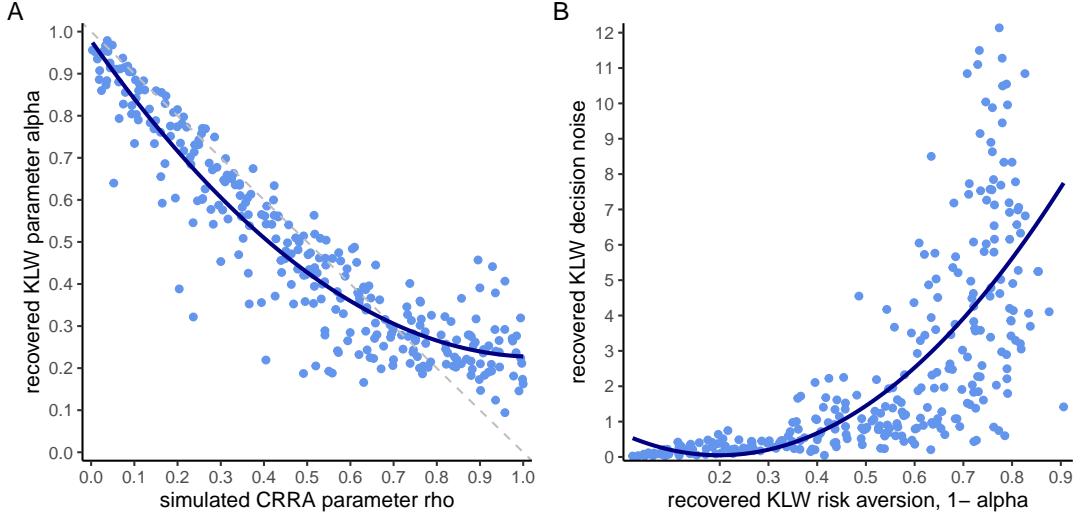


Figure 3: Effects of visual display for rewards in pounds versus pence

Simulations shown in the figure are based on an expected utility specification with CRRA utility such as described in the notes to figure 1. Choices are simulated based on a random utility specification, such as to exhibit the non-monotonocities described in the introductory figure. Panel A plots simulated CRRA parameters against the KLW discriminability parameter α recovered from the simulated EU plus RUM choices. Panel B plots decision noise in the KLW probit as a function of $1 - \alpha$, i.e. of as-if risk aversion in KLW.

Figure 3 reports a simulation that highlights this flexibility. Choices are generated using the CRRA-based random utility model, with true CRRA coefficients ρ drawn uniformly from $[0, 1]$ (see Online Appendix A for details). The simulated data are then fit using the KLW specification in equation (1). Panel A plots the true, choice-generating parameter ρ on the horizontal axis against the recovered KLW discriminability parameter α on the vertical axis. For moderate levels of risk aversion, α closely tracks the underlying ρ . However, once ρ exceeds about 0.75, the recovered α plateaus rather than continuing to fall. This flattening arises because utility differences become so small relative to the noise level that further increases in curvature no longer generate systematically different stochastic choice patterns: RUM-simulated choices drift toward random responding and cease to be informative about curvature.

Panel B shows the recovered decision-noise term $\tau \sqrt{2\alpha(1 - \alpha)}$. In stark contrast to the inverse-U relationship *predicted behaviourally* by KLW, the noise *econometrically recovered from the RUM simulation* increases monotonically as $1 - \alpha$ increases (i.e. as α

decreases). In other words, although the KLW model predicts a specific non-monotonic pattern between as-if risk aversion and decision noise, it is nevertheless econometrically flexible enough to accommodate the monotonic error structure generated by a standard RUM (or its generative counterparts).

This econometric flexibility—together with the behavioural specificity of the KLW predictions—is the key feature exploited by the model-based tests developed below. Because the inverse-U pattern arises as a behavioural implication of Bayesian decoding rather than as a restriction imposed on the econometric mapping, it provides a sharp diagnostic for distinguishing underlying choice-generating mechanisms.¹⁰

4 Empirical evidence

The theoretical analysis above generates sharply contrasting predictions about how discriminability affects stochastic choice. Encoding-based models predict that as outcomes become harder to discriminate, decision noise increases monotonically, pushing choices toward stochastic indifference in low-discriminability regions. In contrast, the Bayesian decoding framework predicts a non-monotonic relationship: choice variability peaks when discriminability is intermediate and declines again when noise dominates entirely. This implies that Bayesian inference reintroduces a form of stochastic monotonicity in choice patterns. In the empirical analysis that follows, I test these contrasting predictions by examining how observed choice variability changes as we experimentally vary discriminability between choice options.

4.1 Experimental setup

To test these predictions, I design an experiment that generates systematic variation in discriminability and coding noise. Subjects repeatedly choose between risky lotteries (x, p) and a sure amount c . The probability p varies across nine levels $\{0.1, \dots, 0.9\}$, while the sure amount c spans a range centered on the expected value px , with a somewhat denser sampling on the risk-averse side (see Online Appendix E for stimuli and

¹⁰Several econometric approaches have been proposed to address the non-monotonicities of random utility models, including contextual utility (Wilcox, 2011) and random-preference formulations (Apesteguia and Ballester, 2018). While these fixes address identification concerns under expected utility, they continue to imply that decision noise increases monotonically as utility differences shrink. They therefore do not generate the subsequent decline in noise at low discriminability implied by Bayesian decoding. See Online Appendix B for discussion.

instructions). This design induces a rich set of perceptual tradeoffs across both outcome and probability dimensions. Each subject completes 175 binary choices, including a 10% fraction of repeated trials that allow me to assess within-subject choice consistency.

Numerical magnitude manipulation. The key experimental manipulation alters the numerical scaling of outcomes while keeping their economic value fixed. Subjects are randomly assigned to one of three between-subjects *magnitude-scaling treatments*, which differ only in the numerical units used to represent payoffs:

- **Low-magnitude treatment:** £1 = 1 ECU
- **Medium-magnitude treatment:** £1 = 100 ECU
- **High-magnitude treatment:** £1 = 10,000 ECU

Across treatments, the underlying choice problems are economically identical; only the numerical representation of outcomes differs. [Garagnani and Vieider \(2025\)](#) show that representing quantities outside an adapted numerical range alters the precision of internal magnitude representations. The scaling manipulation therefore generates exogenous variation in outcome discriminability, while leaving incentives unchanged. This variation allows us to test whether decision noise increases monotonically as discriminability falls—as predicted by encoding-based models—or instead follows the inverse-U pattern implied by Bayesian decoding models.

The experiment was conducted online using Prolific (UK), with a target sample of 200 subjects per treatment. The median completion time was 14 minutes. Subjects were compensated for their time in accordance with Prolific’s payment guidelines. In addition, one out of every ten subjects was randomly selected to receive an additional performance-based payment determined by the outcome of one randomly chosen decision.

4.2 Analysis

I estimate the main behavioural parameters using the Bayesian-inference model of [Vieider \(2024b\)](#), which generalizes the KLW framework to settings in which both outcome magnitudes and probabilities vary.¹¹ This generalization is well suited to the present ex-

¹¹A prominent related account of probability weighting is [Frydman and Jin \(2023\)](#), who derive non-linear probability weights from an efficient-coding framework in which representational precision adapts optimally to the environmental distribution of probabilities. Bayesian inference is used to characterize

periment, as the richer stimulus space induces substantial variation in discriminability—particularly in low-signal regions that are central to the empirical test. Importantly, all core qualitative features of the KLW model are preserved in this specification, including (i) the inverse-U-shaped relationship between discriminability and decision noise, and (ii) the fact that this pattern is a behavioural prediction rather than a mechanical consequence of the econometric specification.

The key idea of the model is that the *log-odds* of winning, $\ln\left(\frac{p}{1-p}\right)$, and the *relative log cost-benefit ratio*, $\ln\left(\frac{c-y}{x-c}\right)$, are inferred from noisy internal representations. Bayesian decoding of these noisy percepts yields the following probit choice equation:

$$\Pr[(x, p; y) \succ c] = \Phi\left(\frac{\gamma \ln\left(\frac{p}{1-p}\right) - \beta \ln\left(\frac{c-y}{x-c}\right) - \ln(\theta)}{\sqrt{\nu_o^2 \beta^2 + \nu_p^2 \gamma^2}}\right), \quad (2)$$

where $\ln(\theta)$ captures the weighted contribution from the prior, which is not of prime interest here, and $\beta \triangleq \frac{\tau_o^2}{\tau_o^2 + \nu_o^2}$ designates outcome-discriminability and $\gamma \triangleq \frac{\tau_p^2}{\tau_p^2 + \nu_p^2}$ likelihood-discriminability (all variables being defined as above, with the subscript p indicating the probability, and the subscript o the outcomes).

The composite error term in the denominator reflects independent noise contributions from outcome and probability representations. Because the experimental manipulation targets numerical magnitude of monetary outcomes, variation in decision noise is expected to arise primarily through changes in outcome discriminability β , while likelihood discriminability γ remains comparatively stable. As a result, the empirically relevant variation in stochastic choice is governed primarily by $\beta(1 - \beta)$, directly paralleling the role of $\alpha(1 - \alpha)$ in the KLW model.

Following [Vieider \(2024b\)](#), I place outcome and probability discriminability on a common representational scale by setting $\nu_o = \nu_p = \nu$ in estimations. This restriction reflects the assumption that numerical magnitude and probability are encoded with comparable baseline noise, while allowing discriminability to differ across dimensions through the prior variances τ_o^2 and τ_p^2 . In the presence of independent variation in p , x , and c , this

optimal decoding under this coding scheme and to derive the implied certainty-equivalent mapping. However, Bayesian inference does not govern stochastic choice itself: the model does not generate a Bayesian stochastic choice equation linking posterior uncertainty to choice variability. The present analysis instead focuses on models in which Bayesian decoding directly determines the structure of stochastic choice, yielding distinct predictions for how decision noise varies with discriminability.

normalization ensures separate identification of β and γ .¹²

I estimate equation (2) using hierarchical Bayesian methods in `Stan` (Carpenter et al., 2017). The hierarchical structure regularizes noisy individual-level estimates in a principled way while preserving genuine heterogeneity. Population-level parameters receive weakly informative but proper hyperpriors. Convergence diagnostics include \hat{R} statistics, checks for divergent transitions, and inspection of posterior correlation structures. All estimation details are provided in Online Appendix C, and Vieider (2024a) offers a tutorial introduction to hierarchical Bayesian estimation of decision models in `Stan`.

4.3 Results

I begin by examining how the experimental manipulation affects the parameters recovered from the econometric model. Unless otherwise noted, all reported p -values refer to two-sided Wilcoxon rank-sum tests applied to the posterior means of the individual-level parameters obtained from the hierarchical Bayesian estimation.

Manipulation checks. Panel A of Figure 4 displays empirical cumulative distribution functions (eCDFs) of the estimated outcome-discriminability parameter β across the three ECU-multiplier conditions. The distributions exhibit a strict monotonic ordering: discriminability is highest in the low-multiplier treatment, intermediate in the medium treatment, and lowest in the high-multiplier treatment. Pairwise comparisons confirm that all differences are statistically significant ($p < 0.001$ in each case). We also observe substantial heterogeneity within each treatment, and importantly, a non-negligible mass of observations with $\beta < \frac{1}{2}$, corresponding to regimes in which internal noise outweighs the signal in Bayesian decoding. This confirms that increasing the ECU multiplier systematically reduces outcome discriminability and generates the exogenous variation required for the main empirical test.

Panel B turns to the distribution of the estimated decision-noise parameter, $\omega \triangleq \nu\sqrt{\beta^2 + \gamma^2}$, which corresponds to the composite standard deviation of the probit error term in equation (2) under the maintained restriction $\nu_o = \nu_p = \nu$. The ordering across treatments is now markedly different. The low-ECU treatment exhibits *intermediate*

¹²Online Appendix D reports alternative specifications that place β and γ on a common prior-variance scale and provides simulation evidence of full parameter recoverability.

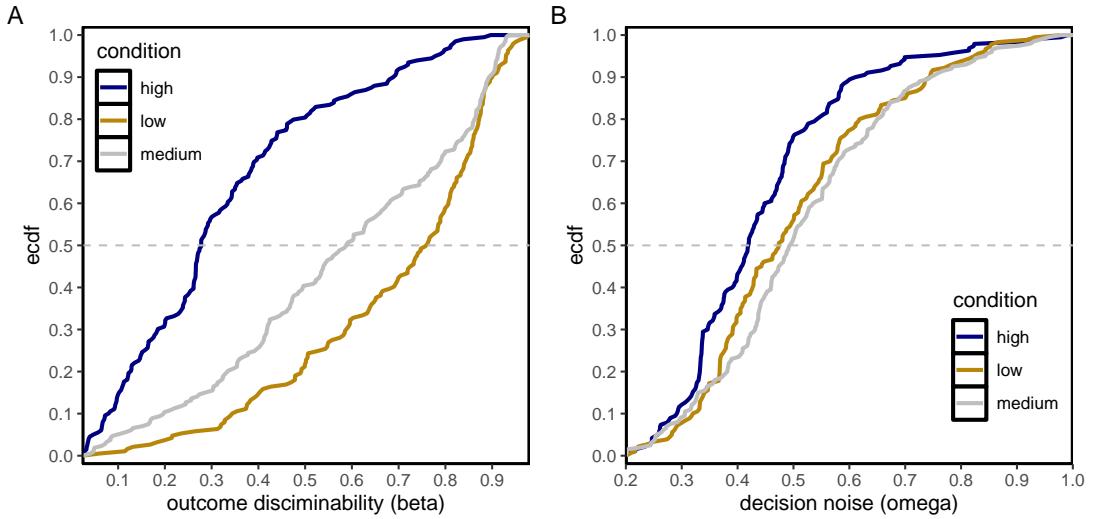


Figure 4: Treatment effects on outcome-discriminability and decision noise

Treatment level distributions of key parameters. Panel A shows the empirical cumulative distribution functions per treatment of outcome-discriminability β . Panel B shows the empirical cumulative distribution functions of decision noise ω .

levels of decision noise, whereas the high-ECU treatment—despite producing the lowest outcome discriminability—shows the *lowest* levels of decision noise ($p < 0.001$ in both pairwise comparisons). The medium-ECU condition displays a slight but statistically insignificant increase in decision noise relative to the low-ECU condition ($p = 0.282$).

Taken together, Panels A and B already point to a clear departure from the monotonic predictions of encoding-based models. Reducing stimulus discriminability does not lead to a monotonic increase in decision noise. Instead, decision noise declines again in the high-noise regime, providing initial evidence for the inverse-U relationship between discriminability and stochastic choice implied by Bayesian decoding.

Bayesian regression to the mean reins in choice stochasticity. Our key interest lies in the individual-level relationship between outcome discriminability β and decision noise $\omega \triangleq \nu \sqrt{\beta^2 + \gamma^2}$. Bayesian decoding predicts that decision noise should be *non-monotonic* and inverse-U shaped in outcome discriminability: as internal signals become increasingly noisy, posterior beliefs place greater weight on the prior mean, which eventually stabilizes behaviour and reduces stochasticity.

Panel A of Figure 5 plots outcome discriminability β on the horizontal axis against decision noise ω on the vertical axis. The scatterplot reveals a pronounced inverse-U

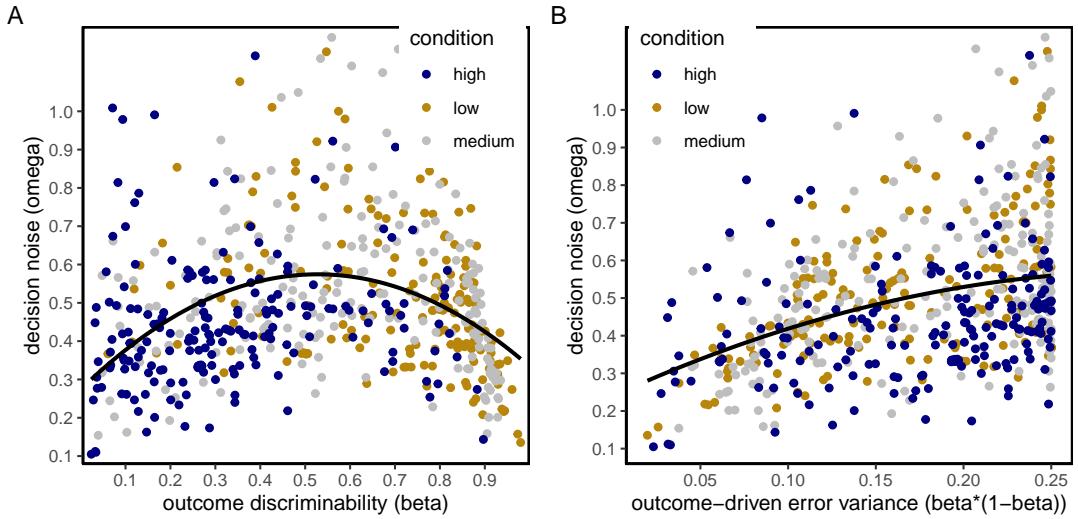


Figure 5: Relationship between outcome discriminability and decision noise

Relationship between outcome discriminability and decision noise. Panel A shows a scatter plot of outcome discriminability β on the horizontal axis, against decision noise ω on the vertical axis. Panel B plots the portion of error variance driven by the outcome dimension, $\beta(1 - \beta)$ on the horizontal axis against decision noise ω on the vertical axis. In both cases the points have been fit by a quadratic regression line. Some extreme observations have been removed to improve the visual experience.

pattern: decision noise is highest at intermediate levels of discriminability and declines both when discriminability is very low and when it is very high. A quadratic regression of decision noise on outcome discriminability confirms this pattern: the linear term is strongly positive ($\hat{\beta}_1 = 1.15$, $p < 2 \times 10^{-16}$), the quadratic term strongly negative ($\hat{\beta}_2 = -1.10$, $p < 2 \times 10^{-16}$), and the implied maximum occurs at $\hat{\beta} \approx 0.52$.

Panel B presents the same relationship using the canonical inverse-U transformation $\beta(1 - \beta)$ that governs the variance term in the Bayesian posterior. When plotted on this scale, decision noise increases monotonically in $\beta(1 - \beta)$, which attains its maximum at $\beta = 0.5$. This pattern follows directly from the structure of Bayesian decoding: noise is smallest when internal signals are either highly reliable or entirely uninformative (in which case the posterior collapses onto the prior), that is, when $\beta \rightarrow 0$ or $\beta \rightarrow 1$ and hence $\beta(1 - \beta) \rightarrow 0$. Decision noise is largest when noisy signals and heterogeneous priors interact most strongly, namely at $\beta \approx 0.5$, where $\beta(1 - \beta)$ is maximized.

In Appendix D.1, I re-estimate all parameters using the original KLW model in equation (1). Despite the richer probability variation in the present experiment—which the KLW specification was not designed to accommodate—the key qualitative patterns are unchanged: (i) outcome discriminability varies systematically across treatments, and

(ii) decision noise declines again at low discriminability, consistent with Bayesian regression toward the prior mean. Together, these results provide strong empirical support for Bayesian decoding and contradict the monotonic stochastic-choice predictions of encoding-based models.

A doubly counterintuitive nonparametric pattern. So far, the analysis has relied on parameters recovered from a structural model to contrast the predictions of encoding-based accounts with those of Bayesian inference. I now show that the central findings replicate using entirely nonparametric indices that capture the same underlying concepts of discriminability and stochasticity, without imposing any functional-form restrictions. This step is important for two reasons. First, it rules out the possibility that the inverse-U pattern documented above is an artefact of the particular econometric specification. Second, it demonstrates that the key behavioural prediction of Bayesian decoding emerges directly in the raw choice data, independently of how decision noise is parameterized. As we will see, the resulting patterns are doubly counterintuitive from the perspective of encoding-based models: reducing discriminability does not monotonically increase choice variability, and the lowest levels of discriminability are associated with *greater*, not weaker, behavioural coherence. These patterns are, however, exactly those implied by Bayesian regression toward the prior mean.

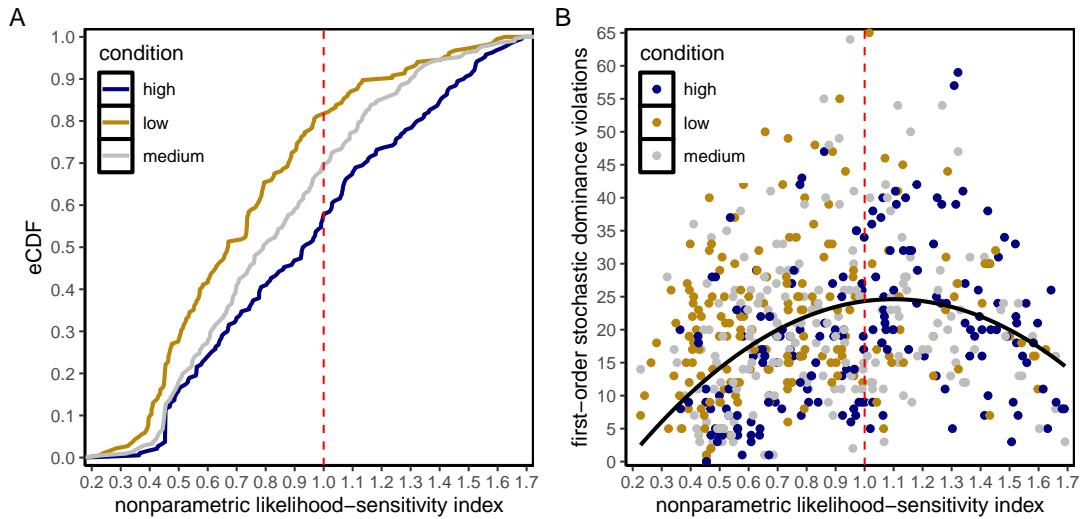


Figure 6: Nonparametric analysis of likelihood-sensitivity and stochastic dominance violations

The figure shows a nonparametric analysis of the relationship between likelihood-sensitivity in risky choice and first-order stochastic dominance violations. Panel A shows eCDFs for likelihood-sensitivity across treatments and subjects. Panel B shows a scatter plot of the nonparametric likelihood sensitivity index on the horizontal axis, against the nonparametric index of stochastic dominance violations on the vertical axis.

Panel A of Figure 6 displays empirical cumulative distribution functions (eCDFs) of a nonparametric index of likelihood sensitivity. This index captures how sharply a subject's probability of choosing the risky option responds to changes in the probability of receiving a fixed prize of £22. It is constructed from normalized differences in stochastic certainty-equivalent approximations taken symmetrically around $p = 0.5$.¹³ The index equals 1 under perfect likelihood sensitivity (as in EU), values below 1 indicate insensitivity, and values above 1 indicate oversensitivity. Conceptually, this index serves as a nonparametric analogue of the γ/β ratio governing likelihood sensitivity in the structural model in equation (2).¹⁴ Decreasing outcome-discriminability β is then predicted to *increase* likelihood-sensitivity γ/β .

The eCDFs exhibit a striking monotonic ordering that mirrors the ordering of outcome discriminability β across treatments. Likelihood sensitivity is lowest in the 1 ECU condition, higher in the 100 ECU condition, and highest in the 10,000 ECU condition. In other words, as outcome representations become noisier, subjects become *more* sensitive to probability differences. This pattern runs counter to encoding-based accounts, which predict that increased noise in one dimension should attenuate sensitivity overall. By contrast, Bayesian decoding predicts that unreliably encoded information is discounted rather than amplified, preventing noise from propagating across dimensions and allowing sensitivity along the remaining dimension to be preserved. These nonparametric findings closely parallel those reported by Oprea and Vieider (2025), who examine the effects of experimentally induced noise in the outcome versus probability dimension on average choice patterns using a different dataset.

Panel B plots the same likelihood-sensitivity index (horizontal axis) against a nonparametric measure of individual-level violations of first-order stochastic dominance (vertical axis). I focus on a *dimension-specific* notion of dominance violations, holding probabilities fixed and varying outcomes. This choice aligns the nonparametric measure directly with the experimental manipulation, which increases noise in the encoding of outcomes rather than probabilities. Specifically, a violation is recorded whenever, for a given prob-

¹³For each probability pair $\{p, 1-p\}$ in $\{0.9:0.1, 0.8:0.2, 0.7:0.3\}$, I construct a stochastic certainty-equivalent proxy from the subject's choice proportion for the risky option. The likelihood-sensitivity measure for each pair is the normalized difference in choice proportions between the high- and low-probability presentations of the same lottery; normalization divides the difference in choice proportions by the corresponding difference in objective probabilities. The individual-level index is obtained by averaging these normalized differences across the three probability pairs.

¹⁴This becomes apparent when both numerator and denominator are multiplied by $1/\beta$.

ability p , a subject exhibits *non-monotonic* choices as the sure amount c increases. A violation is therefore defined as *multiple switching* (e.g., choosing the lottery, then the sure amount, and then the lottery again).¹⁵ The resulting pattern forms—once again—a pronounced inverse-U shape.¹⁶

This pattern is *doubly unintuitive*. First, from a standard noise-based perspective, one would expect more stochastic-dominance violations in the high-noise regime. Yet violations are lowest precisely when outcome-coding noise is greatest (and hence likelihood oversensitivity is most pronounced). Within the logic of the Bayesian-decoding framework, this occurs because regression toward the prior mean stabilizes behaviour when the signal is highly uninformative. Second, one might expect low likelihood sensitivity to mechanically generate more dominance violations, as choices become less responsive to probability differences. Yet violations are remarkably rare among subjects with very low sensitivity to changes in probabilities. Instead, the largest number of violations arises for subjects with intermediate discriminability, where noisy signals and prior expectations interact most strongly.

From the perspective of economic rationality, this pattern appears paradoxical. It is precisely the subjects with *near-perfectly calibrated likelihood sensitivity*—those whose behaviour most closely resembles the expected utility benchmark—who exhibit the largest number of stochastic-dominance violations. In other words, behaviour that appears most “rational” from the perspective of the deterministic normative benchmark model coincides with the greatest instability in choice. Understanding this pattern requires a different conception of rationality. Conditional on noisy internal representations, Bayesian decoding constitutes an optimal response to uncertainty. It is precisely this optimality that generates the coexistence of near-perfect probability sensitivity with heightened stochasticity in choice. Randomness in behaviour, rather than reflecting cognitive failure, can therefore be a direct consequence of optimal inference under noise.

¹⁵This outcome-conditional definition of dominance violations is most consistent with the present manipulation of coding noise. Defining violations along the probability dimension while holding outcomes fixed yields very similar results: a violation is then recorded whenever a subject switches from preferring the lottery at probability p to preferring the sure amount at a higher probability $p' > p$. These results are reported in Online Appendix C.1.

¹⁶This is confirmed by a quadratic regression: both the linear term ($b_1 = 65.4, p < 2 \times 10^{-16}$) and the negative quadratic term ($b_2 = -30.8, p < 2 \times 10^{-16}$) are strongly significant, indicating that violations rise with sensitivity at low values of the index but decline again at higher values.

5 Conclusion

This paper asked what stochastic choice reveals about the processes that generate behaviour. Rather than treating randomness as an exogenous disturbance, I examined generative models in which both average discriminability between choice options and stochasticity across choices arise endogenously from noise in internal representations. Encoding-based models predict that choice variability should increase monotonically as options become harder to discriminate. Bayesian decoding, by contrast, yields a sharply different implication: regression toward prior expectations stabilizes behaviour when signals become uninformative, suppressing stochasticity in the high-noise regime.

The experiment was designed to adjudicate between these competing accounts. By rescaling outcomes into increasingly coarse numerical units, I generated exogenous variation in outcome discriminability while holding the underlying choice environment fixed. Structural and nonparametric analyses converge on the same conclusion. Although discriminability declines monotonically as outcomes are expressed on coarser numerical scales, choice variability does not. Instead, the relationship between discriminability and stochastic choice follows a pronounced inverse-U pattern: variability peaks at intermediate discriminability and declines again when internal signals become very noisy. At the same time, lower outcome discriminability is associated with greater sensitivity to probabilities and fewer violations of stochastic dominance—patterns that run counter to encoding-based accounts but follow directly from Bayesian decoding.

Taken together, these findings imply that stochastic choice bears the distinctive signature of Bayesian inference. Apparent randomness in behaviour is not simply the result of imprecise encoding or independent errors, but reflects optimal decoding of noisy internal signals using prior information about the environment. Efficient-coding considerations may shape the fidelity of internal representations, but they operate within a decoding architecture that constrains how noise is translated into behaviour. More broadly, the results show that patterns of stochastic choice—far from being a nuisance—contain systematic information that can be used to distinguish between competing models of decision-making under risk.

From an economic perspective, these results have direct implications for how we think about the relationship between tastes and choice variability. Deviations from expected-

utility benchmarks need not reflect stable non-standard preferences, nor independent errors of the kind assumed in random utility models, but may instead arise from optimal inference under representational noise. Conversely, this also implies—perhaps paradoxically—that behaviour consistent with expected utility may be observed precisely in high-noise environments, and need not correspond to stable underlying tastes at all. Adjudicating whether observed behaviour truly reflects preferences, rather than the structured consequences of noise, therefore requires careful attention to the structure of stochastic choice data—the central insight of this paper.

References

Alós-Ferrer, Carlos and Michele Garagnani, “Improving risky-choice predictions using response times,” *Journal of Political Economy Microeconomics*, 2024, 2 (2), 335–354.

—, **Ernst Fehr, and Nick Netzer**, “Time will tell: Recovering preferences when choices are noisy,” *Journal of Political Economy*, 2021, 129 (6), 1828–1877.

Apesteguia, Jose and Miguel A Ballester, “Monotone stochastic choice models: The case of risk and time preferences,” *Journal of Political Economy*, 2018, 126 (1), 74–106.

Ballinger, T. Parker and Nathaniel T. Wilcox, “Decisions, Error and Heterogeneity,” *The Economic Journal*, 1997, 107 (443), 1090–1105.

Barlow, Horace B., “Possible Principles Underlying the Transformation of Sensory Messages,” in Walter A. Rosenblith, ed., *Sensory Communication*, Cambridge, MA: MIT Press, 1961, pp. 217–234.

Bishop, Christopher M., *Pattern recognition and machine learning*, Vol. 4, Springer, 2006.

Busemeyer, Jerome R and James T Townsend, “Decision field theory: a dynamic-cognitive approach to decision making in an uncertain environment.,” *Psychological Review*, 1993, 100 (3), 432.

Carpenter, Bob, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell, “Stan: A probabilistic programming language,” *Journal of Statistical Software*, 2017, 76 (1), 1–32.

Casella, George and Roger Berger, *Statistical inference*, Chapman and Hall/CRC, 2024.

de Clippel, Geoffroy, Ryan Oprea, and Karen Rozen, “As-If,” *Working Paper*, 2024.

Dehaene, Stanislas, “The neural basis of the Weber–Fechner law: a logarithmic mental number line,” *Trends in Cognitive Sciences*, 2003, 7 (4), 145–147.

Enke, Benjamin and Thomas Graeber, “Cognitive uncertainty,” *Quarterly Journal of Economics*, 2023, 138 (4), 2021–2067.

—, —, and **Ryan Oprea**, “Complexity and Time,” *Journal of the European Economics Association*, 2024, 23 (5), 1838–1867.

Frydman, Cary and Lawrence J Jin, “Efficient coding and risky choice,” *Quarterly Journal of Economics*, 2022, 136, 161–213.

— and **Lawrence J. Jin**, “On the Source and instability of probability weighting,” Working Paper 2023.

Garagnani, Michele and Ferdinand M. Vieider, “Economic Consequences of Numerical Adaptation,” *Psychological Science*, 2025, 36 (6), 407–420.

Heng, Joseph A, Michael Woodford, and Rafael Polania, “Efficient sampling and noisy decisions,” *Elife*, 2020, 9, e54962.

Khaw, Mel Win, Ziang Li, and Michael Woodford, “Cognitive imprecision and small-stakes risk aversion,” *The Review of Economic Studies*, 2021, 88 (4), 1979–2013.

Krajbich, Ian, Carrie Armel, and Antonio Rangel, “Visual fixations and the computation and comparison of value in simple choice,” *Nature Neuroscience*, 2010, 13 (10), 1292–1298.

Laughlin, Simon, “A simple coding procedure enhances a neuron’s information capacity,” *Zeitschrift für Naturforschung c*, 1981, 36 (9-10), 910–912.

Loomes, Graham, “Modelling the stochastic component of behaviour in experiments: Some issues for the interpretation of data,” *Experimental Economics*, 2005, 8, 301–323.

Ma, Wei Ji, Konrad Paul Kording, and Daniel Goldreich, *Bayesian Models of Perception and Action: An Introduction*, MIT press, 2023.

McGranaghan, Christina, Kirby Nielsen, Ted O’Donoghue, Jason Somerville, and Charles D Sprenger, “Distinguishing common ratio preferences from common ratio effects using paired valuation tasks,” *American Economic Review*, 2024, 114 (2), 307–347.

Natenzon, Paulo, “Random choice and learning,” *Journal of Political Economy*, 2019, 127 (1), 419–457.

Netzer, Nick, “Evolution of time preferences and attitudes toward risk,” *American Economic Review*, 2009, 99 (3), 937–55.

Nielsen, Kirby and John Rehbeck, “When choices are mistakes,” *American Economic Review*, 2022, 112 (7), 2237–2268.

Oprea, Ryan, “Decisions Under Risk are Decisions Under Complexity,” *American Economic Review*, 2024, 114 (12), 3789—3811.

- **and Ferdinand M. Vieider**, “Minding the Gap: On the Origins of the Description-Experience Gap,” Technical Report, Working Paper 2024.
- **and Ferdinand M Vieider**, “The New Psychophysics of Risk and Time,” *Working Paper*, 2025.
- Robson, Arthur J**, “The biological basis of economic behavior,” *Journal of Economic Literature*, 2001, 39 (1), 11–33.
- , “Why would nature give individuals utility functions?,” *Journal of Political Economy*, 2001, 109 (4), 900–914.
- Stewart, Neil, Nick Chater, and Gordon DA Brown**, “Decision by sampling,” *Cognitive psychology*, 2006, 53 (1), 1–26.
- Thurstone, Louis L**, “A law of comparative judgment.,” *Psychological Review*, 1927, 34 (4), 273.
- , “Psychophysical analysis,” *The American Journal of Psychology*, 1927, 38 (3), 368–389.
- Vieider, Ferdinand M.**, “Cognitive Foundations of Delay-Discounting,” *Working Paper*, 2023.
- , “Bayesian Estimation of Decision Models,” Technical Report, RISLab 2024.
- , “Decisions under Uncertainty as Bayesian Inference on Choice Options,” *Management Science*, 2024, 70 (12), 9014–9030.
- Wilcox, Nathaniel T.**, “‘Stochastically more risk averse:’ A contextual theory of stochastic discrete choice under risk,” *Journal of Econometrics*, May 2011, 162 (1), 89–104.
- Zhang, Hang, Xiangjuan Ren, and Laurence T Maloney**, “The bounded rationality of probability distortion,” *Proceedings of the National Academy of Sciences*, 2020, 117 (36), 22024–22034.
- Zilker, Veronika and Thorsten Pachur**, “Nonlinear probability weighting can reflect attentional biases in sequential sampling.,” *Psychological Review*, 2022, 129 (5), 949.

ONLINE APPENDIX

A Simulation details for Figure 3

To illustrate the qualitative predictions of a heteroscedastic random-utility model, I simulate binary risky choices under a probit specification with independent additive noise. The simulation proceeds in four steps.

(i) Lottery construction. Risky lotteries take the form (x, p) , where the prize x ranges from 60 to 200 in steps of 20, and the probability takes one of two values $p \in \{0.40, 0.55\}$. The sure amounts c range from 8 to 160 in steps of 8. I retain only dominated pairs with $c < x$, yielding the choice set

$$\mathcal{S} = \{(x, p), c : x \in \{60, \dots, 200\}, c \in \{8, \dots, 160\}, p \in \{0.40, 0.55\}, c < x\}.$$

(ii) Heterogeneous preference and noise parameters. I generate $N = 300$ simulated individuals. Each individual is endowed with: (i) a CRRA curvature parameter

$$\rho_i \sim \text{Uniform}(0, 1),$$

and (ii) a noise parameter

$$\sigma_i \sim \text{Lognormal}(\log 5, 0.9^2),$$

which governs the magnitude of the random disturbance in the probit model.

(iii) Sampling of choice problems. For each individual i , I draw 21 choice problems at random (with replacement) from \mathcal{S} and combine these with the full set of problems once, producing a mixed design with both common and idiosyncratic choice sets. The resulting dataset contains multiple observations per individual on a diverse set of lotteries.

(iv) Stochastic choice generation. Utility for each lottery is given by the CRRA specification $u(x) = x^{1-\rho_i}$ (with the usual logarithmic limit case). The deterministic

utility difference for individual i on choice problem j is therefore

$$\Delta_{ij} = p_j x_j^{1-\rho_i} - c_j^{1-\rho_i}.$$

Choices follow a probit random-utility specification with heteroscedastic noise (i.e. the noise term is individual-specific):

$$\Pr((x_j, p_j) \succ c_j \mid i) = \Phi\left(\frac{\Delta_{ij}}{\sqrt{2} \sigma_i}\right),$$

and the observed binary choice is generated as

$$y_{ij} \sim \text{Bernoulli}\left(\Phi\left(\frac{\Delta_{ij}}{\sqrt{2} \sigma_i}\right)\right).$$

This simulated dataset is then analyzed using the same estimation procedures as for the empirical data, allowing me to compare the nonparametric patterns implied by a standard heteroscedastic RUM with those observed in the experiment.

Hierarchical Bayesian estimation of the KLW model

For each choice problem i for individual n , the risky option is a lottery (x_i, p_i) and the sure option is c_i . As in the main text, I rewrite the deterministic component of the KLW decision index in terms of outcome ratios and probabilities,

$$\ell_i = \log\left(\frac{x_i}{c_i}\right), \quad \log p_i = \log(p_i).$$

At the individual level, the KLW model is parameterised by a coding-noise parameter $\nu_n > 0$ and a response-noise parameter $\sigma_n > 0$. These are mapped into the signal weight

$$\alpha_n = \frac{\sigma_n^2}{\sigma_n^2 + \nu_n^2}$$

and the effective probit scale

$$\omega_n = \sqrt{2} \nu_n \alpha_n = \sqrt{2} \frac{\sigma_n^2 \nu_n}{\sigma_n^2 + \nu_n^2},$$

as derived in Section 3. Conditional on (α_n, ω_n) , the choice probability for individual n on trial i is

$$\Pr((x_i, p_i) \succ c_i \mid n) = \Phi\left(\frac{\alpha_n \ell_i + \log p_i}{\omega_n}\right),$$

and the observed choice is

$$y_{in} \sim \text{Bernoulli}\left(\Phi\left(\frac{\alpha_n \ell_i + \log p_i}{\omega_n}\right)\right).$$

To allow for heterogeneity across subjects, I place a bivariate normal prior on the log-parameters $(\log \nu_n, \log \sigma_n)$:

$$\begin{pmatrix} \log \nu_n \\ \log \sigma_n \end{pmatrix} \sim \mathcal{N}_2(\boldsymbol{\mu}, \Sigma), \quad \Sigma = \text{diag}(\boldsymbol{\tau}) R \text{diag}(\boldsymbol{\tau}),$$

where $\boldsymbol{\mu} = (\mu_1, \mu_2)^\top$ is a vector of population means, $\boldsymbol{\tau} = (\tau_1, \tau_2)^\top$ is a vector of population standard deviations, and R is a 2×2 correlation matrix.

Priors are chosen to be weakly informative on the log scale:

$$\mu_j \sim \mathcal{N}(0, 5), \quad j = 1, 2; \quad \tau_j \sim \text{Exponential}(5), \quad j = 1, 2; \quad R \sim \text{LKJ}(4).$$

The normal priors on μ_j imply that ν_n and σ_n are a priori spread over several orders of magnitude (since $\log \nu_n$ and $\log \sigma_n$ are typically between -10 and 10 with overwhelming probability). The exponential priors on τ_j favour moderate between-subject heterogeneity while still allowing large values, and the LKJ prior with shape parameter 4 puts mild weight on correlations near zero but does not rule out strong correlations. Overall, these priors are deliberately diffuse: their role is to stabilise inference without imposing tight a priori restrictions on the population distribution of (ν_n, σ_n) .

B Contextual Utility and Random Preferences

This section examines whether two fixed of the random-utility pathology described in the literature—contextual utility and random-preference specifications—alter the qualitative predictions on the relationship between discriminability and decision noise documented in the main text.

B.1 Contextual utility

Wilcox (2011) contextual-utility correction was developed to address a well-known issue in estimating expected-utility (EU) models with random-utility error. In a standard EU–RUM specification,

$$U(x, p) = p u(x), \quad U(c, 1) = u(c),$$

the curvature of $u(\cdot)$ interacts mechanically with the range of outcomes: changing the scale of the stimulus space (for example by multiplying all outcomes by a constant) alters the effective steepness of the deterministic index and thereby the sensitivity of choice probabilities to payoff differences. Contextual utility introduces a simple normalization that rescales $u(\cdot)$ within each display or context.

Let k index the context (here corresponding to the ECU scaling level). Each context k includes a lower and upper outcome bound, \underline{x}_k and \bar{x}_k . The contextual transformation replaces $u(\cdot)$ with an affine normalization,

$$u_k(x) = \frac{u(x) - u(\underline{x}_k)}{u(\bar{x}_k) - u(\underline{x}_k)},$$

which maps the context-specific minimum to 0 and the maximum to 1. Preferences remain EU, but the scale of the deterministic index depends on the range of outcomes shown in context k .

In each context, choices are generated from the transformed deterministic utilities

$$U_k(x, p) = p u_k(x), \quad U_k(c, 1) = u_k(c),$$

combined with a random-utility error term. Under a probit specification,

$$\Pr((x, p) \succ c \mid k) = \Phi\left(\frac{U_k(x, p) - U_k(c, 1)}{\sigma_k}\right),$$

where σ_k is the (context-specific or common) noise scale. Because the contextual transformation is affine, it preserves the ratio-scale structure of EU but simply rescales the deterministic difference $U_k(x, p) - U_k(c, 1)$.

Importantly, the contextual adjustment enters **only in the numerator**. Noise remains

an exogenous additive term appended at the final stage, and the model retains the core implication of heteroscedastic RUM: as discriminability declines, the denominator dominates and choice probabilities collapse monotonically toward 1/2. As shown in the simulations below, incorporating contextual utility does not generate the inverse-U pattern in decision noise predicted by Bayesian decoding; the qualitative monotonicity of RUM is unchanged.

B.2 Random-preference specifications

Random-preference models replace a fixed utility function with a distribution over utility indices, typically by assuming that each choice instance draws a parameter θ that governs risk attitudes or utility curvature. This relocates randomness from an additive error term (as in classical RUM) to the underlying preferences themselves. As [Apesteguia and Ballester \(2018\)](#) stress, such models can repair several comparative-statics pathologies of RUM applied to EUT: choice probabilities can be made monotone in attributes even when the standard additive-error specification would violate monotonicity. In that sense, random preferences improve the link between economic structure and observed choice probabilities.

However, this change in where randomness enters the model does not introduce a mechanism akin to Bayesian regression to the mean. Let U_θ denote a von Neumann–Morgenstern utility function indexed by a random parameter θ , and let A and B be two lotteries. A random-preference model implies

$$\Pr(A \succ B) = \Pr(U_\theta(A) - U_\theta(B) > 0) = \Pr(\Delta(A, B|\theta) > 0),$$

where $\Delta(A, B|\theta)$ is a deterministic function of the stimuli for each θ . Changing the discriminability of the lotteries affects Δ through the payoffs and probabilities, and hence shifts the measure of θ for which A is preferred to B . But there is no internal prior over outcomes or probabilities, and no encoding–decoding stage in which the variance of the decision index can shrink when the signal becomes uninformative. All stochasticity is driven by variation in θ .

From an econometric perspective, this implies that random-preference models and Bayesian-decoding models make fundamentally different predictions for how decision noise should

behave as discriminability varies. In Bayesian models, noise arises from corrupted internal representations, and when the signal is very weak the decoder regresses toward the prior, *reducing* the dispersion of the decision index and stabilising choice. In random-preference models, by contrast, the distribution of θ is fixed, and there is no structural link between low discriminability and a reduction in effective noise. Any inverse-U relationship between discriminability and stochastic choice would therefore have to be imposed indirectly via the assumed distribution of preferences or the design of the stimulus space, rather than emerging as a generic implication of the model. In particular, random preferences do not predict the specific pattern highlighted in this paper: low decision noise when discriminability is either very high or very low, and maximal noise at intermediate levels of discriminability.

C Bayesian estimation details

In this section I describe the hierarchical Bayesian estimation procedure used to recover individual-level psychophysical parameters from the experimental data. Each choice problem i for individual n consists of a risky lottery (x_i, p_i) with lower outcome ℓ_i and higher outcome h_i , evaluated against a sure amount c_i . Two transformed regressors are constructed:

$$\text{lcb}_i = \log\left(\frac{c_i - \ell_i}{h_i - c_i}\right), \quad \text{llr}_i = \log\left(\frac{p_i}{1 - p_i}\right),$$

corresponding respectively to the log-relative position of the sure outcome within the risky payoff range, and the log-likelihood ratio of the probability p_i .

Individual-level parameters. Each individual n is characterised by five positive psychophysical parameters:

$$\nu_n, \quad \sigma_{o,n}, \quad \sigma_{p,n}, \quad \eta_n, \quad \xi_n.$$

The parameter ν_n governs the overall noise in the internal code ('coding noise'). The parameters $\sigma_{o,n}$ and $\sigma_{p,n}$ control the noise in the outcome and probability channels, respectively. The parameters η_n and ξ_n capture the idiosyncratic prior means for outcomes and probabilities in the Bayesian decoding stage. All parameters are defined on

the log-scale for estimation convenience:

$$(\log \nu_n, \log \sigma_{o,n}, \log \sigma_{p,n}, \log \eta_n, \log \xi_n) \sim \mathcal{N}_5(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$

Signal weights and effective scale. Following the psychophysical derivations in Section 3, the model implies separate signal weights for outcomes and probabilities:

$$\alpha_n = \frac{\sigma_{o,n}^2}{\sigma_{o,n}^2 + \nu_n^2}, \quad \gamma_n = \frac{\sigma_{p,n}^2}{\sigma_{p,n}^2 + \nu_n^2}.$$

These govern the extent to which decoded internal values depend on current stimuli versus prior expectations. The effective probit scale is

$$\omega_n = \nu_n \sqrt{\alpha_n^2 + \gamma_n^2},$$

which reflects the joint contribution of coding noise and Bayesian regression effects.

Choice probability. For individual n on trial i , the decision index implied by the Bayesian decoder is

$$d_{in} = \frac{\gamma_n \text{llr}_i + (1 - \gamma_n) \log(\eta_n) - [\alpha_n \text{lcb}_i + (1 - \alpha_n) \log(\xi_n)]}{\omega_n}.$$

The associated choice probability for the risky option is

$$\Pr((\ell_i, h_i, p_i) \succ c_i \mid n) = \Phi(d_{in}),$$

and the observed choice is generated as

$$y_{in} \sim \text{Bernoulli}(\Phi(d_{in})).$$

Hierarchical structure and priors. To allow for flexible heterogeneity across individuals, the five log-parameters are given a population-level multivariate normal prior,

$$\theta_n = \begin{pmatrix} \log \nu_n \\ \log \sigma_{o,n} \\ \log \sigma_{p,n} \\ \log \eta_n \\ \log \xi_n \end{pmatrix} \sim \mathcal{N}_5(\boldsymbol{\mu}, \Sigma), \quad \Sigma = \text{diag}(\boldsymbol{\tau}) R \text{diag}(\boldsymbol{\tau}),$$

with weakly informative priors:

$$\mu_j \sim \mathcal{N}(0, 10), \quad \tau_j \sim \text{Exponential}(1), \quad R \sim \text{LKJ}(1).$$

The normal priors on the population means are deliberately diffuse, corresponding to several orders of magnitude variation in the implied scale parameters. The exponential priors on the standard deviations favour moderate heterogeneity while allowing large variation in the population. The LKJ(1) prior places a uniform density over correlation matrices, avoiding any a priori bias toward independence.

These priors are chosen to be minimally informative. Their purpose is not to regularise behaviour toward any particular psychophysical structure, but simply to stabilise estimation while allowing the posterior to be driven almost entirely by the data. In practice, posterior inferences are highly robust to reasonable alternative choices of prior scale.

Estimation workflow

All models are estimated in STAN using Hamiltonian Monte Carlo (HMC) as implemented in the No-U-Turn Sampler (NUTS). For each specification, I run four parallel Markov chains with 2,000 iterations each, discarding the first 2,000 iterations of each chain as warm-up. This yields 4,000 post warm-up draws for posterior inference.

Priors are specified as described above and are deliberately weakly informative, ensuring that posterior inferences are driven primarily by the likelihood rather than by prior regularisation. All continuous parameters are sampled on an unconstrained scale and transformed to the positive reals where appropriate, which improves sampler stabil-

ity.

Convergence is assessed using standard diagnostics. I report the potential scale reduction factor \hat{R} for all parameters and generated quantities, requiring values below 1.02 as evidence of satisfactory mixing. Effective sample sizes (both bulk and tail) are examined to ensure that posterior quantities are estimated with sufficient precision. Trace plots and rank plots are inspected to verify that the chains explore the posterior without divergent transitions or pathological behaviour.

Posterior summaries reported in the main text and online appendix are based on the aggregated post warm-up draws from all four chains. Point estimates are posterior means unless otherwise stated, and uncertainty is summarised using central 95% posterior credible intervals.

C.1 Stability analysis and parameter recoverability

To assess whether the Bayesian decoder can recover the underlying psychophysical parameters from finite binary choice data, I conduct a recoverability exercise based on fully simulated choices. The simulation proceeds in three steps: (i) construction of the choice set; (ii) generation of individual-level psychophysical parameters; and (iii) stochastic choice generation under the full Bayesian model.

(i) Choice set. Each simulated choice consists of a risky lottery (h, p) that pays a high outcome $h = 140$ with probability $p \in \mathcal{P}$ and a low outcome $y = 0$ otherwise, evaluated against a sure amount $c \in \mathcal{C}$. The probability set is

$$\mathcal{P} = \{0.05, 0.10, 0.15, 0.30, 0.45, 0.50, 0.55, 0.60, 0.70, 0.85, 0.90, 0.95\},$$

and the set of sure amounts is

$$\mathcal{C} = \{10, 15, 20, \dots, 130\}.$$

The Cartesian product $\mathcal{P} \times \mathcal{C}$ yields the choice set \mathcal{S} containing all combinations of (p, c) paired with the fixed lottery $(h = 140, y = 0)$.

For realism, each simulated individual is later presented with the full choice set together with a small random sample of additional repeated trials (six per individual) to mimic

the uneven design of the empirical dataset.

(ii) Psychophysical parameters. I simulate $N = 100$ heterogeneous individuals. Each individual is endowed with four positive psychophysical parameters:

$$\nu_n > 0, \quad \sigma_{o,n} > 0, \quad \sigma_{p,n} > 0, \quad \xi_n > 0.$$

These govern the coding noise, the outcome-channel noise, the probability-channel noise, and the prior mean on outcomes, respectively. Parameters are drawn from diffuse distributions chosen to span a wide region of the parameter space:

$$\begin{aligned} \nu_n &\sim |\mathcal{N}(0.6, 0.3^2)|, \\ \sigma_{o,n} &\sim |\mathcal{N}(0.9, 0.4^2)|, \\ \sigma_{p,n} &\sim |\mathcal{N}(0.7, 0.35^2)|, \\ \xi_n &\sim |\mathcal{N}(0.7, 0.3^2)|, \end{aligned}$$

where the absolute value ensures positivity. The Bayesian decoder implies two signal weights,

$$\alpha_n = \frac{\sigma_{o,n}^2}{\sigma_{o,n}^2 + \nu_n^2}, \quad \gamma_n = \frac{\sigma_{p,n}^2}{\sigma_{p,n}^2 + \nu_n^2},$$

and a prior-adjusted outcome factor,

$$\delta_n = \xi_n^{1-\gamma_n}.$$

The effective probit scale is

$$\omega_n = \nu_n \sqrt{\alpha_n^2 + \gamma_n^2}.$$

(iii) Stochastic choice generation. For individual n facing choice problem (p_i, c_i) , the Bayesian decoder implies the decision index

$$d_{in} = \frac{\gamma_n \log \frac{p_i}{1-p_i} - \alpha_n \log \left(\frac{c_i - y}{h - c_i} \right) + \log(\delta_n)}{\omega_n}.$$

The corresponding choice probability for selecting the risky option is

$$\Pr((h, p_i) \succ c_i \mid n) = \Phi(d_{in}),$$

and the observed choice is drawn as

$$y_{in} \sim \text{Bernoulli}(\Phi(d_{in})).$$

(iv) Resulting dataset. The final simulated dataset contains all choice pairs (p_i, c_i) crossed with all simulated individuals, plus six additional randomly sampled repeated problems per individual. This construction yields a dataset closely mirroring the structure and heterogeneity of the empirical data, allowing a direct test of whether the hierarchical Bayesian estimator can recover the individual-level psychophysical parameters from finite, realistically noisy choice data.

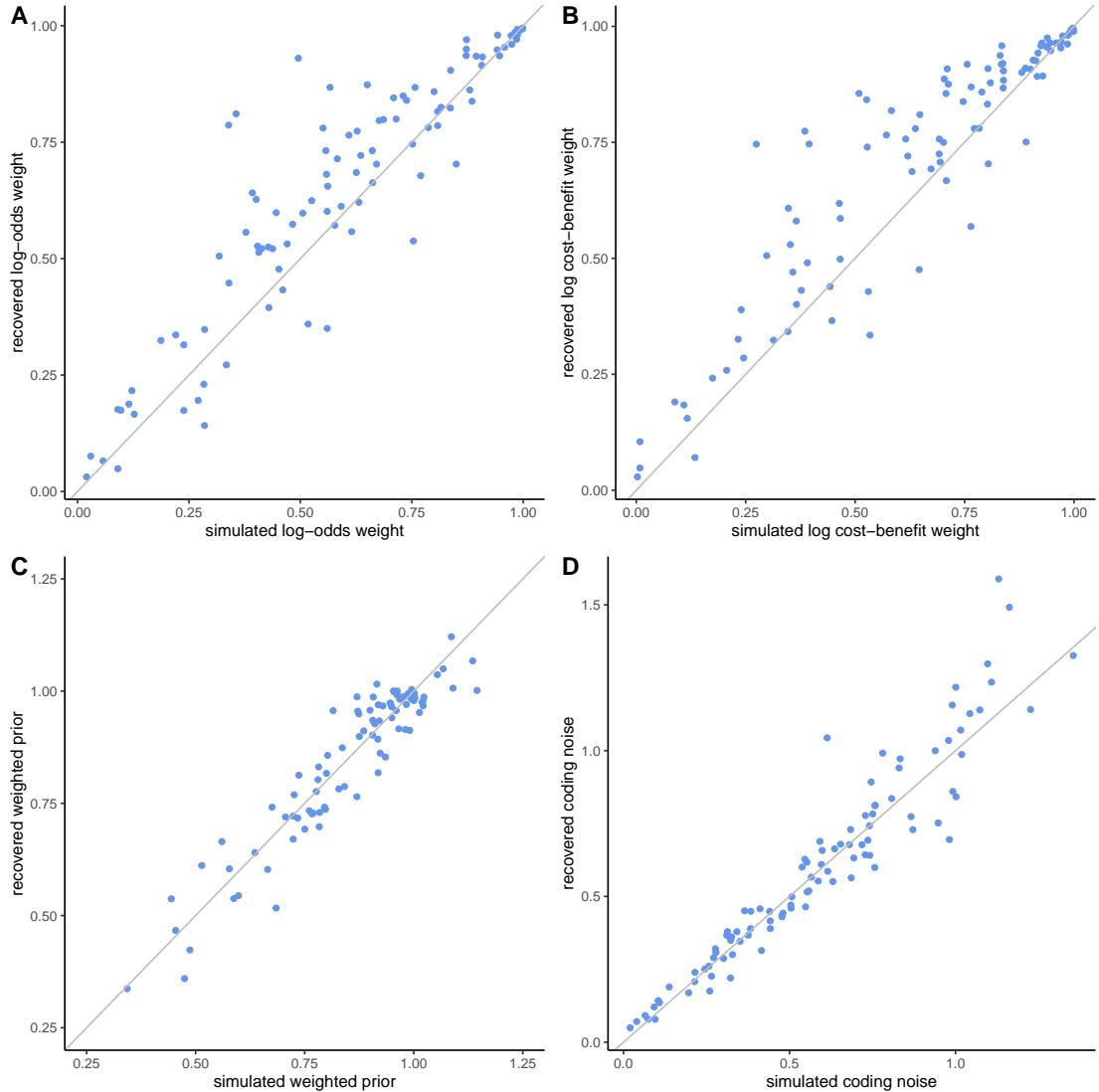


Figure 7: Recoverability of Bayesian Inference Model parameters

Recoverability of Bayesian Inference Model parameters

Figure 7 shows that parameter recoverability is indeed excellent. All spearman correlations between simulated and recovered parameters fall above 0.9.

D Analysis: Robustness checks

I here present various robustness checks for the main analysis described in the body of the paper. In particular, I 1) re-estimate the data using the KLW model instead of the generalization including probability transformations; 2) check robustness to putting β and γ on a common variance scale instead of a common noise scale; and 3) I compare the nonparametric likelihood-sensitivity result to an equivalent result based on the parametric estimates.

D.1 Re-estimation using the KLW model

Figure 8 displays the relationship between individual-level discriminability (α) and the estimated decision-noise parameter $\sqrt{2}\nu\alpha$ obtained from fitting the KLW model to the experimental data. With the horizontal axis reversed, movement from left to right corresponds to a transition from high to low discriminability. The key pattern predicted by the Bayesian inference mechanism is clearly present: as discriminability declines, the estimated decision noise falls steadily. This is the precise *opposite* of the qualitative prediction shared by likelihood-based models such as Thurstone, Decision-by-Sampling, or likelihood-only efficient coding, all of which imply that noise should rise monotonically as discriminability worsens. The distinctive Bayesian signature is therefore readily apparent in the experimental data.

We do not, however, observe uniformly low noise for the highest levels of discriminability at the extreme left of the graph. Although most observations in this region come from the low-ECU treatment, the estimated decision noise exhibits substantial vertical dispersion: subjects with very similar discriminability display widely different noise levels. This dispersion is readily explained. When outcome discriminability is high, the KLW noise term $\sqrt{2}\nu\alpha$ becomes increasingly sensitive to heterogeneity in how subjects react to *probabilities*. In the present experiment, probability sensitivity varies markedly across individuals, and the as-if expected-utility representation embedded in KLW does not model such heterogeneity explicitly. The residual vertical spread at high discriminability

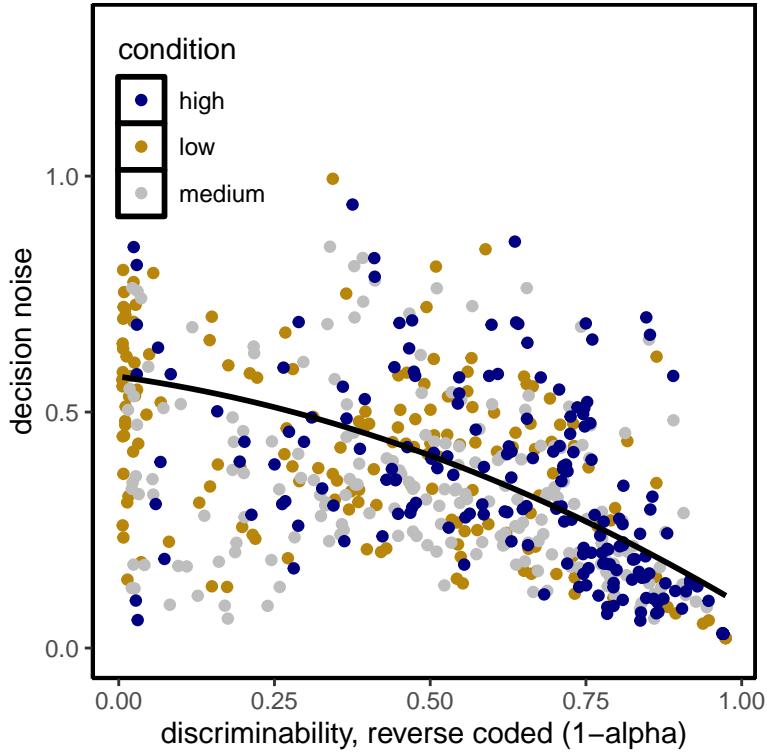


Figure 8: Outcome-discriminability and decision noise in the KLW model

therefore reflects cross-subject variation in probability processing, not a failure of the Bayesian-decoding mechanism.

D.2 Alternative prior-variance parameterization

Next, we examine the robustness of the inverse-U relationship to the specific econometric assumptions adopted in the main text. In the benchmark estimation in the main text, I imposed a single coding-noise parameter ν shared across the outcome and probability channels, i.e. $\nu = \nu_o = \nu_p$. Here, I relax this restriction and allow the coding-noise parameters to differ, $\nu_o \neq \nu_p$. To ensure that the two signal weights β (for outcomes) and γ (for probabilities) remain on a common scale—and that they remain identifiable from choice data alone—I impose a common prior variance, $\sigma \triangleq \sigma_o = \sigma_p$, in the Bayesian decoder.

Figure 9 plots the resulting relationship between outcome discriminability β (horizontal axis) and decision noise $\omega \triangleq \sqrt{\nu_o^2 \beta^2 + \nu_p^2 \gamma^2}$ (vertical axis). The inverse-U pattern is reproduced cleanly: decision noise is lowest when the signal is either very strong or very

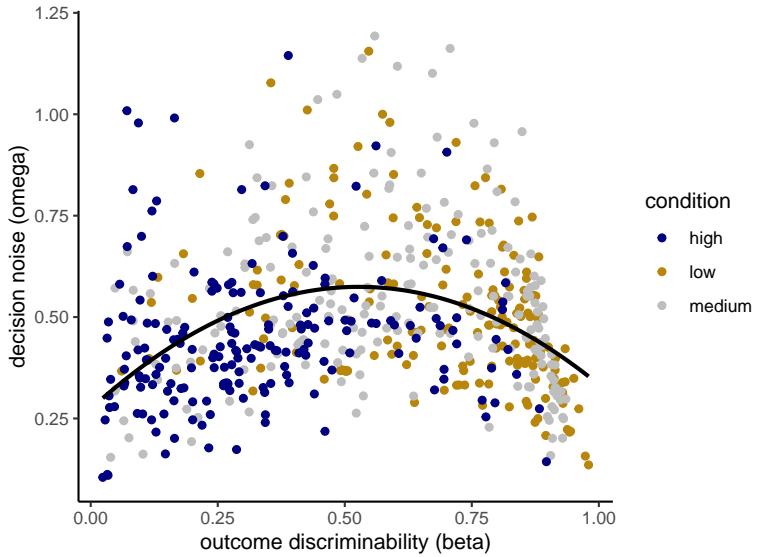


Figure 9: Outcome discriminability and decision noise under a common prior-variance scale.

weak, and reaches its maximum at intermediate discriminability. Allowing ν_o and ν_p to differ therefore does not attenuate the key qualitative signature of Bayesian inference. If anything, the flexibility introduced by heterogeneous coding noise sharpens the curvature of the inverse-U, reinforcing the view that the pattern is intrinsic to Bayesian regression to the prior rather than an artifact of the baseline parameterization.

D.3 Nonparametric noise measures

In the main text, I correlated the nonparametric likelihood-sensitivity index with a measure of stochastic dominance violations calculated conditioning on the probability p . The reason was that this index seems to be reflect variation across outcomes, which is the dimension for which coding noise is being manipulated in the experiment.

Here, I show that the key result of the inverse-U relation is robust to using a different measure of stochastic dominance violations, calculated *across* p , i.e. holding all outcomes constant and registering violations as a switch from choosing the lottery to choosing the sure outcome as p increases. Figure 10 shows the correlation of this measure with the nonparametric likelihood-sensitivity index. While the function peaks somewhat to the right of the perfect sensitivity benchmark (after all, noise across probabilities is not manipulated, and the mean is determined by signal exceeding noise), it is clearly inverse-U shaped. This is confirmed by a quadratic regression, which has a linear term $b_1 = 66.695$, and a quadratic terms $b_2 = -26.853$, both significant with $p < 2 * 10^{-16}$.

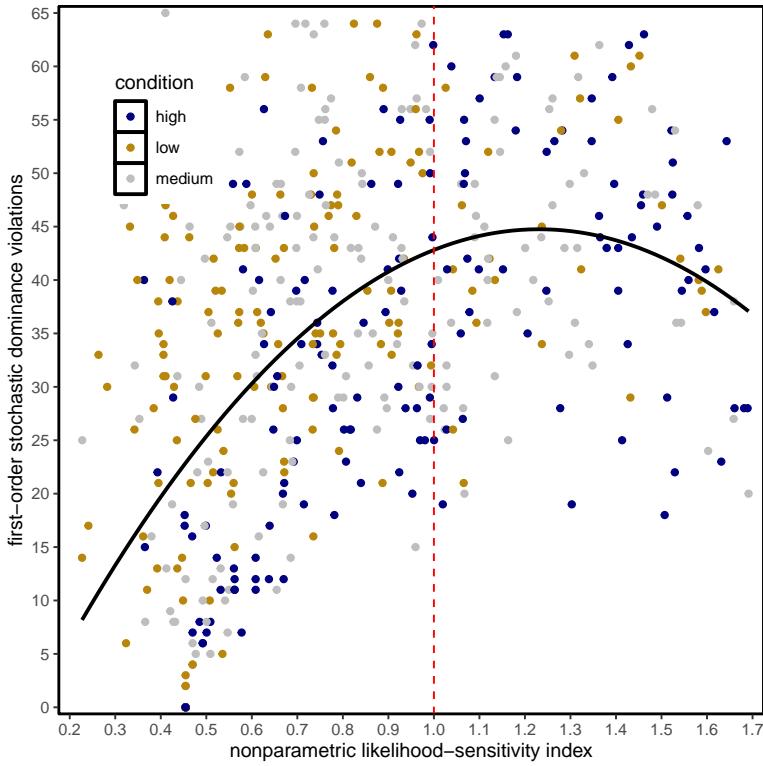


Figure 10: Likelihood-sensitivity and between-probability stochastic dominance violations

E Experimental materials and stimuli

All choice stimuli were constructed from a simple generative rule designed to ensure (i) wide but controlled variation in likelihood discriminability, (ii) balanced coverage of probabilities and sure amounts, and (iii) naturalistic spacing of risky and safe options.

The basic stimulus was a binary lottery (x, p) paying $x > 0$ with probability p and 0 otherwise, evaluated against a sure amount c . The construction proceeded in four steps.

1. Base probability grid. The main set of risky options used a coarse grid of probabilities,

$$p \in \{0.1, 0.2, \dots, 0.9\}.$$

2. Sure-amount bands centred on the expected value. For each probability p , sure amounts were chosen from a band centred on the expected value of the lottery,

$\text{EV}(p) = px$. The sure amount c was drawn from the integer range

$$c \in \{\lfloor \text{EV}(p) - 10 \rfloor, \dots, \lceil \text{EV}(p) + 6 \rceil\},$$

truncated to lie in the global domain $c \in \{1, \dots, 21\}$. This rule keeps the risky and sure options economically comparable while providing systematic variation in outcome discriminability.

3. Two auxiliary lists with a lower prize. To broaden the range of risk-return combinations, two additional blocks of trials were created in which the prize was set to $x = 20$ instead of $x = 22$. These blocks used only $p = 0.3$ and $p = 0.7$, with sure amounts generated by the same EV-centred rule as above. This yields two “matched” lists differing only in the lottery prize.

4. A small set of repeated trials. To enable nonparametric reliability checks, a random 15% subsample of the main $x = 22$ block was duplicated and flagged as repeat trials. These repetitions were presented at different points in the sequence.

5. Final trial set. The three components—the full $x = 22$ block, the two $x = 20$ blocks, and the repeat subsample—were combined and sorted by (p, x, c) to generate the final trial list. Each trial was also assigned a unique identifier. Probabilities were displayed to subjects as integer percentages $\text{pcp} = 100 \times p$.

The resulting stimulus set provides a dense, well-controlled design that varies discriminability through probability and outcome scaling while keeping the overall structure of the task intuitive for participants.

The Instructions read as follows:

INSTRUCTIONS

Thank you for taking part in this study.

We will ask you to take repeated decisions involving lotteries. On each screen, you will be asked to choose between **a lottery** and **a sure amount** of money.

Chances of winning the prize in the lottery are **always indicated in percentages**.

Monetary payments are **always indicated in Economic Currency Units (ECU)**.

At the end, you may be paid a bonus based on one of your choices: **the conversion factor for that bonus is 100 ECU to 1 pound**.

There are no right or wrong answers—we are purely interested in your preferences.

Here is an example of a choice task:

1200 ECU with a 50% chance, or else 0

500 ECU for sure

In the example above, you are asked to choose between a lottery paying 1200 ECU with a 50% chance (or else nothing), and a sure payment of 500 ECU.

If this is the randomly selected choice paid for real:

- If you selected the **sure amount**, we will pay you that amount
- If you selected the **lottery**, we will draw a ball from an urn containing 100 sequentially numbered balls. If the ball extracted bears a number between 1 and 50 inclusive, we will pay you the prize. If the ball contains a number between 51 and 100 inclusive, we will pay you nothing.

You will be presented repeatedly with such tasks, and you are asked to indicate your choice for each one of those tasks. Notice that **both the amounts and the chances involved may change from screen to screen**. Please consider the information carefully and choose your preferred option.