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Abstract

Behaviour is intrinsically variable. When individuals repeatedly choose between
risky options, their decisions often differ from one occasion to the next. Such
stochasticity is typically treated as an obstacle to the identification of stable pref-
erences. Here I argue instead that the structure of stochastic choice itself can be
informative about when observed behaviour reflects underlying tastes, and when it
does not. I study this question using a lottery choice experiment that varies how
easy it is to distinguish between choice options by rescaling monetary payoffs. I
document a robust inverse-U shaped relationship between the ease of discrimina-
tion and choice variability: as options become harder to distinguish, choices initially
become more variable, but eventually stabilize rather than reverting toward stochas-
tic indifference. This pattern contradicts the predictions of standard random utility
models, which imply that choice variability should increase monotonically as op-
tions become harder to distinguish. More generally, it contradicts models in which
increasing noise in internal signals leads behaviour to approach stochastic indiffer-
ence. Instead, the observed pattern is a direct implication of models in which noisy
representations are optimally combined with prior information through Bayesian
inference. The results show that choice variability, rather than being a mere ob-
stacle to econometric identification, has diagnostic value for discriminating between
competing models of decision-making. More broadly, the findings have important
implications for the interpretation of preferences, suggesting that many apparent
departures from benchmark models of rational choice reflect structured inference
errors rather than stable non-standard tastes.
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1 Motivation

Behaviour is intrinsically variable. When individuals repeatedly choose between risky

wagers or delayed rewards, their choices often differ from one occasion to the next. Such

stochasticity is typically treated as an obstacle to the identification of stable preferences,

to be absorbed by a random utility term or averaged away. This paper argues instead

that the structure of stochastic choice can be informative about when observed choices

are reliable expressions of underlying tastes, and when they are not.

I examine this problem through the lens of recent approaches in economics that model

stochastic choice as arising from noise in the evaluation of choice-relevant quantities.

A central feature of these models is that both systematic choice patterns and choice

variability arise from the same underlying source of noise, rather than from separate

preference and error components. Importantly, different ways of handling such noise

imply sharply different predictions for how choice variability behaves as options become

harder to discriminate. I leverage this structure to use stochastic choice as a diagnostic

tool, showing how patterns of choice variability can inform the extent to which observed

behaviour reflects stable tastes, or instead arises from systematic mistakes.

Random utility and preference identification. A central difficulty in random utility

models is that deterministic preference parameters need not map uniquely into observed

choice behaviour. From the opposite vantage point, the same observed stochastic choice

patterns can be compatible with multiple underlying taste parameters (e.g., different

levels of risk aversion). Figure 1 illustrates this identification problem in a standard

expected-utility (EU ) framework. Following Apesteguia and Ballester (2018), the figure

plots the probability of choosing a lottery—assumed to exceed the sure option in expected

value—as a function of the coefficient of relative risk aversion.1

A risk-neutral decision-maker will prefer the lottery to the sure option, since the former

has higher expected value. As risk aversion increases, the choice probability of the risky

option initially declines, as one would expect. As risk aversion rises further, however,

the deterministic expected-utility difference between the lottery and the sure option
1One interpretation of this plot is as representing a population of decision-makers who face the same

objective choice problem and share the same variance of internal noise, but differ in the curvature of
their utility functions. While EU and a Probit specification are adopted here for concreteness in the
simulation, the qualitative patterns illustrated in the figure are a general feature of random utility
models.
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Figure 1: Choice proportion of lottery as a function of risk aversion
The simulations are based on a constant relative risk aversion (CRRA) utility function u(x) = x1−r for
r ̸= 1, and u(x) = lnx for r = 1. Stochastic choice is governed by the difference in random utilities Ũ(x, p) =

p u(x) + ϵx and Ũ(c, 1) = u(c) + ϵc, where ϵx and ϵc capture unobserved disturbances. Assuming ϵx, ϵc
i.i.d.∼

N (0, σ2) implies ϵ ≜ ϵx − ϵc ∼ N (0, 2σ2), yielding the Probit choice rule Pr
[
(x, p) ≻ c

]
= Φ

(
p u(x)−u(c)√

2σ

)
.

Choices are generated for a baseline comparison between (60, 0.2) and (8, 1). In the “low noise” simulation,
σ = 1, and in the “high noise” simulation σ = 2. The scaled-stimuli simulation uses the same noise level
as the high-noise case, but multiplies all outcomes by a factor of five, corresponding to a choice between
(300, 0.2) and (40, 1). ∆U indicates the difference in deterministic utilities, U(x, p)−U(c, 1) = pu(x)−u(c).
The qualitative non-monotonicity does not depend on either the EU or the normality assumptions, but
reflects a general feature of the interaction between utility curvature and additive noise.

continues to shrink, eventually becoming small relative to the variance of the stochastic

disturbance. At that point, random utility disturbances dominate the deterministic util-

ity difference, discriminability between the options deteriorates, and choice probabilities

drift back toward stochastic indifference. This non-monotonic relationship between risk

aversion and choice probabilities is a well-known implication of random utility models

(Wilcox, 2011; Apesteguia and Ballester, 2018): higher levels of risk aversion need not

translate into systematically higher choice proportions of the safer option. This results in

an identification problem—the mapping between choices and tastes is not unique.

The same non-monotonicity in stochastic choice can arise even when preferences and

noise are held fixed (i.e. for one and the same decision-maker) but choice primitives are

scaled. For illustration, Figure 1 also plots choice probabilities for a rescaled version of

the same choice problem, in which all outcomes are multiplied by a constant factor.

Under constant relative risk aversion, such rescaling leaves deterministic preferences

unchanged. Nevertheless, it alters the discriminability of the options relative to the fixed
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noise level, leading to markedly different stochastic choice behaviour. This illustrates that

the identification problem can arise even for a given decision-maker, as a function of how

the range and composition of choice stimuli interact with a fixed level of noise.2

Interpreting Stochastic Choice in Random Utility Models. Random utility mod-

els are typically interpreted as reduced-form representations of choice behaviour: They

describe statistical regularities in observed choices without, by themselves, pinning down

a unique behavioural or structural interpretation. As a result, the identification failure

described above does not carry a single implication—the same stochastic choice patterns

can be understood in different ways, depending on how the random utility formulation

is interpreted.

One interpretation views these patterns primarily through an econometric lens (Wilcox,

2011; Apesteguia and Ballester, 2018). In this view, stochasticity is treated as a distur-

bance that obscures underlying deterministic preferences, but carries little behavioural

content of its own. The goal is therefore to recover the preference parameters that

would govern choice in the absence of noise. Apesteguia and Ballester (2018) show that

restoring monotonicity between a deterministic expected utility representation and its

stochastic implementation can substantially affect inferred tastes. In particular, they

demonstrate that standard random utility specifications may understate risk aversion

for decision-makers with a high frequency of safe choices. More generally, inferences

about preferences under the maintained assumption of expected utility depend on how

the mapping from deterministic utilities to stochastic choice behaviour is specified.

An alternative interpretation treats the stochastic choice patterns illustrated above as

reflecting features of behaviour itself. From this perspective, stochasticity operates at the

moment of choice, and can generate systematic deviations from deterministic benchmark

models describing a decision-maker’s stable tastes. Departures from expected utility

are then interpreted as arising from errors or imprecision in the evaluation of utilities,

rather than as evidence of stable non-standard preferences. For instance, McGranaghan

et al. (2024) argue that common ratio effects observed in binary choice are logically

dissociated from underlying preference representations. By comparing behaviour across

different elicitation methods—binary choices and certainty equivalents—they show that
2Analogous reversions toward stochastic indifference can also arise at very small stakes, which may

be hard to discriminate even at low levels of risk aversion.
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observed choice patterns need not admit a unique preference-based interpretation. This

raises broader questions about the extent to which stable preferences can be inferred

from binary choice data alone.

Stochastic Choice from Noisy Representations. Decision-makers do not have di-

rect access to objective quantities governing the choice problem. To guide behaviour,

choice primitives must thus first be internally evaluated or encoded—a step that is inher-

ently noisy. Recent work in economics has therefore modelled stochastic choice as arising

from noise in the internal representations of choice-relevant quantities. As a consequence

of this modelling approach, both average choice patterns and choice variability emerge

endogenously from stochasticity in these internal representations. Studying stochastic

choice through the lens of such models has two key advantages. First, these models

provide stylized representations of the mechanisms generating choice behaviour, and

therefore admit a generative—i.e. causal—interpretation. As a result, their predictions

are behavioural in nature, rather than reduced-form, as in standard random utility mod-

els. Second, because both systematic choice patterns and stochastic variation originate

from the same source of noise, these models impose nontrivial structure on stochastic

choice itself. This structure will be central to the analysis that follows.

Models proposed within this general framework fall into two sharply distinct classes,

which differ in how noisy internal representations are transformed into choice. One class

of models addresses noise primarily at the encoding stage, by optimally shaping internal

representations given environmental constraints (usually given by the statistical distri-

bution of choice-relevant quantities). A second class of models also exploits information

about environmental distributions, but in a different way: prior statistical knowledge is

used to optimally decode noisy representations in order to infer the underlying choice

primitives that generated them. Although these two ways of dealing with noise are not

in contradiction—and may well coexist in practice—existing models typically emphasize

one or the other. As a result, the two model classes imply sharply different relationships

between discriminability and choice variability.

Encoding-based models address representational noise at the encoding stage, by opti-

mally shaping internal representations given the structure of the environment. This

class includes evolutionary models such as those proposed by Robson (2001a;b) and

Netzer (2009), the Decision-by-Sampling model of Stewart et al. (2006), as well as the

5



efficient coding approach of Frydman and Jin (2022). Although these models differ in

their assumed sources of internal noise and in the optimality criteria used to derive

representational codes, they share a common implication for stochastic choice: As the

discriminability between options declines, choices are predicted to become increasingly

variable, approaching stochastic indifference in the limit. In this respect, encoding-based

models share a qualitative implication with standard random utility models. This pre-

diction follows directly from the emphasis these models place on the informativeness of

internal signals: when internal representations of choice options carry relatively little sig-

nal about their relative attractiveness, responses necessarily become more random.

Decoding-based models, by contrast, rely on Bayesian inference to mitigate the impact

of representational noise. Noisy internal signals are weighted in proportion to their

informativeness: unreliable or extreme signals are discounted and pulled toward prior

expectations, yielding inferences that optimally trade off signal and prior information.

This class includes, for example, the model of small-stakes risk aversion proposed by

Khaw et al. (2021). A central implication of this process is regression to the mean of the

prior. As signals become less reliable, they receive progressively less weight in decisions,

which are instead increasingly guided by prior expectations. This stabilizing property has

sharp implications for stochastic choice. Rather than increasing monotonically, choice

variability is predicted to peak at intermediate levels of discriminability and to decline

again when noise overwhelms the signal. In other words, Bayesian decoding predicts

an inverse-U shaped relationship between discriminability and stochastic choice—the

opposite of the prediction made by encoding-based models.

Testing Predictions of Encoding and Decoding Models. I test the contrasting

predictions of encoding- and decoding-based models by systematically manipulating out-

come discriminability in a lottery choice experiment. The key manipulation consists in

varying the numerical scale in which monetary outcomes are denominated, by mapping

payoffs into experimental currency units. As shown by Garagnani and Vieider (2025),

such scale transformations can systematically shift decision noise in predictable ways.

Oprea and Vieider (2025) use an analogous manipulation to demonstrate how changes in

numerical scale affect sensitivity to probabilities, in line with the predictions of Vieider

(2024b). By employing a wide range of exchange rates between GBP and experimental

currency units—specifically, mappings of 1:1, 1:100, and 1:10,000—I generate substantial
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variation in outcome discriminability while holding underlying preferences fixed. This

design induces controlled changes in encoding noise, allowing me to directly test how

choice variability responds as discriminability deteriorates.

The experimental manipulation yields a clear and robust pattern. Outcome discrim-

inability varies systematically across the different payoff scales, confirming that the ma-

nipulation is successful and—importantly—that it generates substantial variation in the

signal-to-noise ratio of internally represented choice primitives. As outcome discrim-

inability is reduced by rescaling monetary payoffs, choice variability initially increases.

Once signals in outcome representations become dominated by noise, however, choice

variability begins to decline again. In other words, stochastic choice exhibits a pro-

nounced inverse-U shaped relationship with discriminability. Importantly, I show that

this pattern emerges both in econometric tests and in nonparametric analyses designed

to provide a fully model-free assessment.

Implications for interpretations of preferences. The key finding of an inverse-U

shaped relationship between outcome discriminability and choice variability is difficult

to reconcile with encoding-based models, which predict that choice variability should

increase monotonically as discriminability deteriorates. By contrast, it is a direct impli-

cation of decoding-based models, in which noisy internal signals are optimally combined

with prior information. The result therefore bears directly on a foundational interpretive

question: when should stochastic choice be treated as revealing stable underlying tastes,

and when should it instead be understood as reflecting decision error?

First, the stabilizing effect implied by Bayesian decoding is not achieved by modifying

the stochastic specification of a deterministic choice model, as in standard random util-

ity approaches. Instead, monotonicity in choice behaviour follows as an implication of

optimal inference applied to noisy representations. In this sense, decoding-based models

provide a resolution to the identification problems highlighted by Wilcox (2011) and

Apesteguia and Ballester (2018) that operates at a conceptually different level: it is not

the mapping from preferences to choice that is altered, but the process by which noisy

internal signals are translated into decisions. A perhaps paradoxical implication of this

insight is that behaviour which appears most consistent with benchmark models such as

expected utility need not be the most stable or least noisy.
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Second, the results are also at odds with behavioural interpretations of the random

utility model that treat increased choice variability at low levels of discriminability as

obscuring otherwise stable underlying tastes. In this view, as options become harder

to discriminate, choices are expected to revert toward stochastic indifference in regions

of low discriminability. In this respect, the random utility model shares the qualita-

tive implication of encoding-based models: choice variability is predicted to increase

monotonically as discriminability deteriorates. The experimental evidence presented

here shows that this implication does not hold. When outcome representations become

sufficiently noisy—and thus when choice options are hardest to discriminate—behaviour

does not revert toward stochastic indifference. Instead, choice variability declines and

behaviour stabilizes. This indicates that reversion toward stochastic indifference at low

discriminability is not a general behavioural response to noise.

Even though the stochastic choice implications of the random utility model do not hold,

the conclusions of the paper nonetheless converge with recent work emphasizing the limits

of inferring stable tastes from choice data alone (Nielsen and Rehbeck, 2022; de Clippel

et al., 2024; McGranaghan et al., 2024). Within the logic of the Bayesian inference

framework, deviations from EU benchmarks arise as the endogenous consequence of

noisy internal representations of choice-relevant quantities. As a result, departures from

economic rationality may manifest as small-stakes risk aversion, probability distortions,

or distortions in intertemporal choice. The crucial distinction between standard random-

utility approaches and Bayesian decoding models thus lies in the structure of the noise,

rather than in their deeper normative conclusions.3 As a result, deviations from expected

utility can be understood as mistakes—but as mistakes generated by structured inference

under noise, not as the outcome of unstructured stochastic disturbances.

Contribution and Relation to the Literature. This paper builds on a growing

literature that models decision-making as arising from noisy representations of choice-

relevant quantities. Khaw et al. (2021) propose and test a model in which small-stake risk

aversion emerges from noise in the representation of choice primitives. Several papers

independently propose explanations of probability weighting as an outgrowth of noisy

representations (Zhang et al., 2020; Enke and Graeber, 2023; Frydman and Jin, 2023;
3Bayesian decoding models remain normative conditional on noisy internal representations: given

the information available to the decision-maker, behaviour is optimal in the sense of Bayesian inference.
In this sense, the inference process is optimal given the noise in internal representations.

8



Oprea, 2024; Oprea and Vieider, 2024; Vieider, 2024b). Similar principles have been

applied to explain deviations from exponential discounting benchmarks (Vieider, 2023;

Enke et al., 2024; Oprea and Vieider, 2025). A closely related contribution is Natenzon

(2019), who proposes a Bayesian inference model of stochastic choice to explain attraction

and compromise effects. While several of these papers propose choice rules grounded

in Bayesian inference, their empirical focus lies on average choice patterns or specific

anomalies, rather than on the structure of stochastic choice itself.

The paper is also closely related to a literature emphasizing the limits of inferring pref-

erences from observed choice behaviour, building on earlier behavioural interpretations

of stochastic choice (Ballinger and Wilcox, 1997; Loomes, 2005). Nielsen and Rehbeck

(2022) allow subjects to choose whether to commit to rational-choice axioms and study

how deviations from these principles are reconciled in subsequent choices, with the aim

of distinguishing tastes from mistakes. McGranaghan et al. (2024) examine common

ratio violations using both binary choices and certainty equivalents, and show that such

violations in binary choice can arise even under expected utility when stochastic choice

is taken into account. de Clippel et al. (2024) compare behaviour in settings with ex-

perimentally induced demand to decision-making under risk, finding strong correlations

across contexts that suggest a prominent role for heuristics or as-if rationality rather than

stable utility maximization. My results are closely related to this literature in that they

likewise support the view that observed choices may reflect mistakes. The contribution

here is to focus on the structure of choice variability itself as a diagnostic tool.

Finally, the paper is related to work that studies stochastic choice using additional ob-

servables beyond choice itself. A literature in psychology emphasizes the role of decision

times and their relationship to processes of evidence accumulation (Krajbich et al., 2010),

with related applications to decision-making under risk (Busemeyer and Townsend, 1993;

Zilker and Pachur, 2022). Recent work in economics has similarly leveraged response

times to improve the identification of choice models and stochastic components (Alós-

Ferrer et al., 2021), or to enhance out-of-sample prediction of risky choices (Alós-Ferrer

and Garagnani, 2024). The present contribution is orthogonal to this literature, in that

it focuses on the structure of choice variability across tasks, without relying on auxiliary

process measures.
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2 Encoding-based model of stochastic choice

In a random utility model (RUM ), discriminability between options and stochasticity

in choice are modelled independently, and the model remains silent about the cognitive

origin of the noise. As a result, the same observed choice behaviour can be attributed

either to changes in preferences or to changes in unobserved disturbances, with no prin-

cipled way to adjudicate between the two. This ambiguity suggests examining stochastic

choice from the perspective of explicitly generative models. In such models, both dis-

criminability and stochastic choice arise endogenously from assumptions about how noise

enters internal representations of choice stimuli, creating a link between discrimination

and stochasticity.

2.1 The psychophysics of noisy internal representations

The origin of the random utility model can be traced to Thurstone (1927a;b). Thurstone

developed his framework to model discrimination as the outcome of noisy internal rep-

resentations, building on earlier work by Weber and Fechner. I describe this framework

here not for historical reasons, but because its core equations provide a common blueprint

for the stochastic choice predictions of the models examined in this paper.

Consider two objects, denoted x and c for coherence with the discussion above. In Thur-

stone’s original examples these might correspond to two physical weights, with the task

being to judge which object is heavier. For concreteness, suppose that x > c. Thurstone

posits that physical magnitudes are mapped into internal psychophysical representations,

and that these representations are inherently noisy. Let the internal representations of

x and c be denoted by rx and rc, respectively. His framework assumes

rx = f(x) + εx, rc = f(c) + εc,

where f(·) is a deterministic psychophysical mapping and εx and εc are stochastic distur-

bances. Throughout, I assume that representational noise is Gaussian and independent

across objects,4 with εx ∼ N (0, σ2
x) and εc ∼ N (0, σ2

c ).5

4I maintain this assumption of independence here and throughout. Note, however, that independence
is not required: Thurstone (1927a) explicitly discusses a version of the model with correlated noise. Such
correlations may improve predictions in certain contexts; see Natenzon (2019) for a prominent example.

5A key conceptual point—often misunderstood in later economic applications—concerns the role of
the normality assumption. For Thurstone, the Gaussian distribution does not describe the distribution
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Given this structure, Thurstone’s law of comparative judgment takes the form

Pr(rx − rc > 0) = Φ

(
f(x)− f(c)√

σ2
x + σ2

c

)
,

where Pr(rx − rc > 0) denotes the probability of correctly identifying the heavier object

(in the running example) on any given trial, and Φ(·) is the standard normal cumu-

lative distribution function. From a purely formal point of view, the standard Probit

specification of a random utility model is obtained by assuming homoscedastic noise

(σx = σc ≜ σ) and by replacing the psychophysical mapping with a utility-based one,

f(x) = U(x, p) and f(c) = U(c, 1).

Notwithstanding this formal similarity, the key difference is that in Thurstone’s frame-

work both discriminability in the numerator and judgment noise in the denominator

arise jointly from noisy internal representations. Judgment accuracy is therefore gov-

erned by two components: the difference between the internal codes, f(x) − f(c), and

the precision of these codes, captured by the inverse of σ2
x + σ2

c . Larger differences in

physical attributes (as mapped through f(·)) and more precise internal representations

yield more accurate judgments. Conversely, stimuli that lie close together in psychophys-

ical space will be discriminated unreliably: even when x > c, judgment reversals occur

with positive probability.

2.2 Encoding-based models of stochastic choice

Thurstone’s work was concerned with the discrimination of physical attributes. Extend-

ing this structure to economic choice problems—such as decisions under risk—requires

introducing subjective valuations or tastes. Given subjective tastes, the relationship be-

tween discriminability and stochastic choice becomes substantially more complex, raising

questions about how tastes can be separated from variability in observed behaviour. I

therefore turn to models in which the allocation of cognitive resources—and hence the

structure of representational noise—is endogenously tied to the decision environment.

These models provide a natural testing ground for how introducing tastes interacts with

discrimination and stochastic choice. I begin with two prominent approaches developed

of external physical stimuli such as x and c. Rather, it reflects an assumption about the distribution
of internal representational noise. Normality is therefore a property of the encoding process, not of the
environment itself.
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for decisions under risk: the pioneering Decision-by-Sampling model of Stewart et al.

(2006), and the efficient-coding account developed by Frydman and Jin (2022).

Decision-by-Sampling (DbS) models subjective value as arising from comparisons of

the stimulus to a finite sample of draws from memory. For continuity with the previous

discussion, I focus only on outcome encoding (probability encoding is analogous). Let

the environmental distribution of outcomes stored in memory be F . When the decision

maker evaluates an outcome x, she compares it to N samples from memory, Y1, . . . , YN ,

drawn i.i.d. from F . The internal representation of x is then its empirical rank,

rx =
1

N

N∑
i=1

1{x > Yi}.

This construction provides a sampling-based microfoundation for Thurstone’s internal

representations. Conditional on x, the indicators 1{x > Yi} are Bernoulli random vari-

ables with success probability F (x). By the law of large numbers, rx converges to F (x)

as N goes to infinity. For finite N , sampling variability implies that

rx = F (x) + εx, εx ∼ N

(
0,

F (x)
[
1− F (x)

]
N

)
,

where the approximate normality of εx follows from the central limit theorem applied to

the sum of N Bernoulli trials (cf. Casella and Berger, 2024, ch. 5).

Evaluating a lottery (x, p) against a sure payoff c yields a stochastic choice rule of the

familiar Probit form:

Pr
[
(x, p) ≻ c

]
= Φ

(
pF (x)− F (c)√

σ2
x + σ2

c

)
,

where σ2
x ≜

F (x)
[
1−F (x)

]
N and σ2

c ≜
F (c)
[
1−F (c)

]
N . This yields the Thurstone discrim-

inability model as a special case, but with rank in memory replacing physical intensity,

and with binomial sampling variance replacing the arbitrary Gaussian noise term of the

random utility Probit.

The stochastic-choice implications of this representation follow directly from the proper-

ties of the sampling variance. When outcomes fall into sparsely populated regions of the
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environmental distribution F , they become difficult to discriminate: small differences in

stimulus magnitude translate into only weak differences in expected rank. At the same

time, the binomial sampling variance remains substantial. As a result, the signal-to-

noise ratio in the internal representations deteriorates, and sampling noise increasingly

dominates the comparison of internal values. Because sampling noise is the sole source

of stochasticity in the model, this implies that choice probabilities drift back toward

stochastic indifference as discriminability declines. The predicted pattern mirrors the

non-monotonic stochastic-choice implications of the RUM discussed above.

Efficient coding and stochastic choice. Efficient coding is a foundational concept in

neuroscience, describing how scarce neural resources optimally adapt to the statistical

structure of stimuli in the environment (Barlow, 1961; Laughlin, 1981). Closely related

ideas have long been applied to decision making, including early evidence-accumulation

models of choice under risk (Busemeyer and Townsend, 1993). More recently, efficient-

coding principles have been formalized in models of risky choice, most prominently in the

efficient-coding account developed by Heng et al. (2020) and adapted to decision making

under risk by Frydman and Jin (2022). Here, I focus on this latter application.

Each attribute of a lottery—such as the prize x in (x, p) or the sure amount c—is in-

ternally represented by a noisy population code. In the efficient-coding framework of

Frydman and Jin (2022), a stimulus x is encoded by a population of n binary neurons,

each firing independently with probability θX(x); similarly, c elicits firing probability

θC(c). The internal codes are the resulting spike counts, rx =
∑n

i=1 si and rc =
∑n

i=1 ti,

with si ∼ Bernoulli(θX(x)) and ti ∼ Bernoulli(θC(c)). This, in turn, implies that rx and

rc will follow binomial distributions governed by probabilities θX(x) and θC(c).

Efficient coding determines the functions θX(·) and θC(·) by optimally allocating coding

precision across the environmental distributions FX and FC . This induces a smooth, non-

linear compression of the stimulus magnitudes. The functions vX(x) and vC(c) denote

the deterministic posterior means implied by this coding scheme.6 Because the underly-

ing spike counts are binomial, the decoded values inherit approximately Gaussian noise
6Although framed in Bayesian terms, the efficient-coding model of Frydman and Jin (2022) effectively

behaves as a likelihood-based model at the level of choice. The assumed uniform prior is an improper
prior in Bayesian statistics, and on a bounded stimulus domain it implies that the posterior is propor-
tional to the likelihood. As a result, posterior uncertainty is not propagated into the decision stage, and
Bayesian regression to the mean does not impact the stochastic choice rule.
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via a standard delta-method argument (cf. Casella and Berger, 2024, ch. 5). The internal

codes can therefore be written in the same form as in DbS and Thurstone:

rx = vX(x) + εx, rc = vC(c) + εc,

with εx ∼ N
(
0, σ2

X(x)
)

and εc ∼ N
(
0, σ2

C(c)
)
, where σ2

X(x) ≜ n θX(x)
[
1 − θX(x)

]
and σ2

C(c) ≜ n θC(c)
[
1 − θC(c)

]
.7 Defining the associated decision-stage values as

V (x, p) = p vX(x) and V (c, 1) = vC(c), yields a choice probability of the Thurstone-

RUM form:

Pr
[
(x, p) ≻ c

]
≈ Φ

 p vX(x)− vC(c)√
σ2
X(x) + σ2

C(c)

 ,

where σ2
X(x) and σ2

C(c) reflect the efficient-coding-induced neural noise.

The efficient-coding model thus fits naturally into the classical random-utility frame-

work and shares the qualitative stochastic-choice implications of Decision-by-Sampling.

As outcomes move into sparsely populated regions of the environmental distribution,

optimal representational compression maps given objective differences into very small

differences in decoded values. Discriminability therefore deteriorates: changes in stim-

ulus magnitude translate into only weak differences in internal representations, while

representational noise remains substantial. As a result, the signal-to-noise ratio in inter-

nal representations falls, and stochastic fluctuations increasingly dominate the compari-

son of values. This implies that choice probabilities drift toward stochastic indifference

as discriminability declines, mirroring the implications of Decision-by-Sampling and the

random-utility model.

The models discussed above are not exhaustive. For instance, the evolutionary accounts

of Robson (2001a;b) and Netzer (2009) provide prominent examples of encoding-based

approaches. In these models, decision-makers face potentially infinitely many consump-

tion levels but can assign utility only in discrete steps, reflecting cognitive limits akin to

Weber’s just-noticeable differences. From an evolutionary perspective, optimality then

requires allocating utility jumps in proportion to the probability density of consumption
7The variance expressions in Decision-by-Sampling and efficient-coding models differ only by nor-

malization. In Decision-by-Sampling, internal representations correspond to normalized ranks, yielding
a variance proportional to F (x)

[
1 − F (x)

]
/N . In efficient-coding models, representations are typically

written in terms of unnormalized sample counts or neural activity, leading to a variance proportional to
n θX(x)

[
1− θX(x)

]
. Both formulations arise from Binomial sampling and are equivalent up to scale.
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opportunities in the environment, with the precise criterion depending on whether one

models the minimization of decision errors (Robson, 2001a;b) or the maximization of

evolutionary fitness (Netzer, 2009). Although formulated at a more abstract level, these

models yield the same qualitative stochastic-choice implications as the accounts consid-

ered above: as discriminability deteriorates in low-density regions of the environment,

choice probabilities revert toward stochastic indifference.

3 Bayesian inference and stochastic choice

I next examine Bayesian inference models. In contrast to encoding-based accounts,

stochastic choice in this class arises primarily at the decoding stage: noisy internal rep-

resentations are not acted upon directly, but are combined with prior knowledge to form

posterior beliefs. A central implication of Bayesian decoding is regression toward prior

expectations. As internal signals become less informative, posterior beliefs place increas-

ing weight on the prior, leading behaviour to stabilize rather than becoming arbitrarily

noisy. To isolate this mechanism as transparently as possible, I will assume homoscedas-

tic coding errors and abstract from optimal adaptation of encoding noise across the

stimulus space. This restriction is not inherent to Bayesian models; it serves to highlight

the distinctive stochastic-choice implications generated by inference itself.

3.1 Bayesian inference restores stochastic monotonicity

Khaw, Li and Woodford (2021) (henceforth: KLW ) develop a neural model of lottery

evaluation in which discriminability between outcomes and stochasticity in choice arise

jointly from noisy numerical magnitude perception combined with Bayesian inference.

Outcomes x are encoded as

rx = ln(x) + εx, εx ∼ N (0, ν2).

This fits the Thurstone template rx = f(x)+ εx with f(x) = ln(x), which can be viewed

as a neural implementation of Fechner’s law.8

The model diverges from the approaches considered so far by introducing a second stage
8The Gaussian noise term is motivated by the tuning curves of number neurons, which exhibit

approximately constant variance in log space (Dehaene, 2003).
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that leverages Bayesian decoding to mitigate perceptual noise. The decision maker is

assumed to hold a prior belief over log magnitudes, ln(x) ∼ N (µ, τ2),9 and to decode

the noisy internal code rx using Bayes’ rule. The resulting posterior mean serves as the

internal value representation of x and is given by

mx ≜ E[ ln(x) | rx ] = α rx + (1− α)µ, α ≜
τ2

τ2 + ν2
.

The posterior mean is a weighted average of the noisy signal and the prior mean, where

the weight on the signal rx, α, depends on the relative reliability of the two sources of

information. When coding noise is low (ν2 → 0), α → 1 and the posterior closely tracks

the true stimulus (since E[rx] = ln(x)). Conversely, when coding noise is high (ν2 → ∞),

α → 0 and the posterior collapses toward the prior mean. This Bayesian decoding rule

is optimal in the sense that it minimizes the mean squared error across repeated trials

(see, e.g., Bishop, 2006; Ma et al., 2023).

Because mx is a linear transformation of the noisy code rx, it remains stochastic even

after Bayesian decoding. Conditional on x, the expectation and variance of the posterior

mean mx across repeated presentations of the same outcome take the form

E[mx | x] = α ln(x) + (1− α)µ, V[mx | x] = α2ν2 = τ2 α (1− α),

where the second equality on the right follows from the definition of α. Thus, while

Bayesian decoding attenuates perceptual noise, it does not eliminate variability in in-

ternal value representations. Importantly, the variance of the decoded representation

depends non-monotonically on discriminability: it is small when α is close to 1 (the

signal dominates), also small when α is close to 0 (the prior dominates), and maximized

at the intermediate point α = 1
2 where prior and signal receive equal weight. This

inverted-U relationship between representational variability and discriminability is the

key property that distinguishes Bayesian decoding from the encoding-based accounts

discussed above.

To connect this representational structure to stochastic choice, it is useful to write the
9Under Gaussian noise in log space, a normal prior over ln(x) is the conjugate representation of beliefs

formed through repeated noisy inference. Importantly, this does not require the true environmental
distribution of x to be log-normal. Rather, it reflects a reduced-form characterization of subjective
beliefs that arise when a decision-maker learns about magnitudes through noisy internal representations.
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implied decision rule for a simple binary lottery. Following Khaw et al. (2021), consider

a lottery (x, p) evaluated against a sure payoff c. The decision maker compares the

posterior mean of the sure amount, mc, to the sum of the log-probability and posterior

log-value of the risky payoff, ln p + mx. Under the assumptions above (and treating

probabilities as encoded without noise), this yields the probit choice rule

Pr[(x, p) ≻ c] = Φ

(
ln p+ α ln

(
x
c

)
√
2αν

)
. (1)

Equation (1) has the overall form of a probit random-utility model, but with a crucial

difference: both the mean perceptual difference in the numerator and the variability in

the denominator are jointly determined by coding noise ν2 and prior variance τ2 through

the discriminability parameter α = τ2/(τ2 + ν2).

This structure has two key implications for our present purposes. First, as emphasized

by Khaw et al. (2021), outcome discriminability α plays the role of an as-if risk-attitude

parameter: holding (µ, τ2) fixed, increasing coding noise ν2 lowers α, thereby increas-

ing apparent risk aversion. Second—and more importantly for this paper—the model

makes a non-trivial prediction about stochastic choice. Holding prior variance τ2 fixed,

increasing coding noise ν2 initially raises choice variability by pushing α toward 1
2 (when

ν = τ), where representational variance is maximized. Beyond this point, further in-

creases in coding noise reduce choice variability, as posterior beliefs become increasingly

dominated by the prior. In the limit as α → 0, the posterior collapses onto the prior

mean and choices become more, not less, coherent.

To make the relationship between discriminability and decision noise explicit, Figure 2

plots the implied decision-noise term τ
√
2α (1− α) as a function of outcome discrim-

inability α. Panel A displays the characteristic inverted-U shape: decision noise is small

when outcomes are either highly discriminable (α ≈ 1) or strongly dominated by prior

expectations (α ≈ 0), and is maximized at the intermediate point α = 1
2 where prior and

signal receive equal weight.

Panel B illustrates the corresponding stochastic-choice implications. In contrast to the

random-utility case examined above, the predicted choice probability of the risky option

now decreases monotonically in coding noise ν (which, for fixed τ , directly governs as-if

utility curvature through α). This monotonicity arises precisely because decision noise
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Figure 2: Stochastic choice predictions under Bayesian inference (KLW)
The figure illustrates the effect of Bayesian inference on stochastic choice behaviour. Panel A shows the
relationship between discriminability α on the horizontal axis, and decision noise

√
2να on the vertical

axis. Decision noise is highest at α = 1
2
, and declines for smaller and larger values of α. Panel B plots

coding noise ν on the horizonal axis against predicted choice proportions of the superior risky option on the
vertical axis. As ν increases as-if risk aversion 1 − α also increases; nevertheless, the choice probability of
the higher-EV risky option declines monotonically.

declines again at low discriminability: Bayesian regression toward the prior prevents noise

from overwhelming the as-if utility difference in the numerator. As a result, the predicted

choice probability of the lottery declines monotonically with ν. The slope of this decline

depends on the prior standard deviation τ , with larger values of τ producing both higher

decision noise (panel A) and a slower decrease in choice probabilities (panel B).

This stands in sharp contrast to the likelihood-based models discussed above. In the clas-

sical random utility model, discriminability depends solely on the distance between deter-

ministic utilities: choices become noisy when utility differences are small, and converge

toward indifference as curvature compresses those differences. In Decision-by-Sampling

and efficient-coding models, by contrast, discriminability is shaped by the mapping from

objective magnitudes to internal representations, which reflects the statistical structure

of the environment. Regions of the stimulus space in which internal codes are densely

packed—or in which the mapping flattens—exhibit low discriminability, even when ob-

jective differences are substantial. The Bayesian inference model departs from both

frameworks. Because Bayesian regression to the mean suppresses noise when signals

are uninformative, choice behaviour stabilizes as α becomes small, restoring a form of

stochastic monotonicity that the other generative models do not predict.
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A subtle but important point concerns the behaviour of the prior variance τ2. Within the

logic of the KLW framework the prior is not externally fixed: it must itself be learned

from noisy posterior inferences. Because the organism infers environmental statistics

through the same noisy perceptual channel used for individual decisions, the precision

of the learned prior will naturally depend on the coding noise ν. For the behavioural

predictions developed above, however, only the ratio ν/τ matters, or equivalently, the

signal-to-noise ratio α = τ2/(τ2 + ν2). Thus, whenever coding noise increases more

rapidly than the learned prior variance—or when individuals differ in their signal-to-noise

ratios—the model robustly yields maximal decision variability at α = 1
2 and stabilization

of choices in the high-noise regime. This observation will be important for interpreting

the econometric flexibility of the model in the next subsection.

3.2 Empirical test strategy

Figure 2 highlights a second feature of the KLW framework that informs the model-

based tests proposed below (which are complemented by nonparametric tests that are

entirely model-free). For a given prior standard deviation τ , variation in coding noise

ν jointly determines as-if utility curvature (through α = τ2/(τ2 + ν2)) and decision

noise τ
√

2α (1− α), generating the characteristic inverted-U relation between them.

Thus, within the KLW model with fixed τ , risk attitudes and choice variability are

tightly linked: changing ν necessarily affects both discriminability and decision noise in

a specific way.

From a purely econometric perspective, however, ν and τ are free parameters. This flex-

ibility allows τ to co-move with ν in such a way that α remains approximately constant

while decision noise, τ
√
2α (1− α), increases or decreases. More generally, by allowing

both ν and τ to vary across individuals or treatments, an econometric estimation of KLW

probit equation can dissociate as-if risk attitudes (captured by α) from response vari-

ability. In particular, the model can generate monotonic increases in choice variability

as α decreases if overall representational noise rises sufficiently fast. In this case, deci-

sion noise can increase even as discriminability falls, generating behaviour observationally

equivalent to higher risk aversion under additive noise. TThis limiting case has a natural

interpretation. The first stage of the KLW framework corresponds to a homoscedastic

version of the Thurstone model. As τ → ∞, the prior variance becomes unbounded,
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effectively yielding an improper (flat) prior. In this limit, the posterior becomes pro-

portional to the likelihood, and Bayesian decoding collapses to a purely encoding-based

estimator.
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Figure 3: Effects of visual display for rewards in pounds versus pence
Simulations shown in the figure are based on an expected utility specification with CRRA utility such as
described in the notes to figure 1. Choices are simulated based on a random utility specification, such as
to exhibit the non-monotonicities described in the introductory figure. Panel A plots simulated CRRA
parameters against the KLW discriminability parameter α recovered from the simulated EU plus RUM
choices. Panel B plots decision noise in the KLW probit as a function of 1− α, i.e. of as-if risk aversion in
KLW.

Figure 3 reports a simulation that highlights this flexibility. Choices are generated using

the CRRA-based random utility model, with true CRRA coefficients ρ drawn uniformly

from [0, 1] (see Online Appendix A for details). The simulated data are then fit using the

KLW specification in equation (1). Panel A plots the true, choice-generating parameter

ρ on the horizontal axis against the recovered KLW discriminability parameter α on the

vertical axis. For moderate levels of risk aversion, α closely tracks the underlying ρ.

However, once ρ exceeds about 0.75, the recovered α plateaus rather than continuing

to fall. This flattening arises because utility differences become so small relative to the

noise level that further increases in curvature no longer generate systematically different

stochastic choice patterns: RUM-simulated choices drift toward random responding and

cease to be informative about curvature.

Panel B shows the recovered decision-noise term τ
√

2α (1− α). In stark contrast to

the inverse-U relationship predicted behaviourally by KLW, the noise econometrically

recovered from the RUM simulation increases monotonically as 1−α increases (i.e. as α
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decreases). In other words, although the KLW model predicts a specific non-monotonic

pattern between as-if risk aversion and decision noise, it is nevertheless econometrically

flexible enough to accommodate the monotonic error structure generated by a standard

RUM (or its generative counterparts).

This econometric flexibility—together with the behavioural specificity of the KLW predictions—

is the key feature exploited by the model-based tests developed below. Because the

inverse-U pattern arises as a behavioural implication of Bayesian decoding rather than

as a restriction imposed on the econometric mapping, it provides a sharp diagnostic for

distinguishing underlying choice-generating mechanisms.10

4 Empirical evidence

The theoretical analysis above generates sharply contrasting predictions about how dis-

criminability affects stochastic choice. Encoding-based models predict that as outcomes

become harder to discriminate, decision noise increases monotonically, pushing choices

toward stochastic indifference in low-discriminability regions. In contrast, the Bayesian

decoding framework predicts a non-monotonic relationship: choice variability peaks when

discriminability is intermediate and declines again when noise dominates entirely. This

implies that Bayesian inference reintroduces a form of stochastic monotonicity in choice

patterns. In the empirical analysis that follows, I test these contrasting predictions by

examining how observed choice variability changes as we experimentally vary discrim-

inability between choice options.

4.1 Experimental setup

To test these predictions, I design an experiment that generates systematic variation

in discriminability and coding noise. Subjects repeatedly choose between risky lotteries

(x, p) and a sure amount c. The probability p varies across nine levels {0.1, . . . , 0.9},

while the sure amount c spans a range centered on the expected value px, with a some-

what denser sampling on the risk-averse side (see Online Appendix E for stimuli and
10Several econometric approaches have been proposed to address the non-monotonicities of ran-

dom utility models, including contextual utility (Wilcox, 2011) and random-preference formulations
(Apesteguia and Ballester, 2018). While these fixes address identification concerns under expected util-
ity, they continue to imply that decision noise increases monotonically as utility differences shrink. They
therefore do not generate the subsequent decline in noise at low discriminability implied by Bayesian
decoding. See Online Appendix B for discussion.
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instructions). This design induces a rich set of perceptual tradeoffs across both outcome

and probability dimensions. Each subject completes 175 binary choices, including a 10%

fraction of repeated trials that allow me to assess within-subject choice consistency.

Numerical magnitude manipulation. The key experimental manipulation alters the

numerical scaling of outcomes while keeping their economic value fixed. Subjects are

randomly assigned to one of three between-subjects magnitude-scaling treatments, which

differ only in the numerical units used to represent payoffs:

• Low-magnitude treatment: £1 = 1 ECU

• Medium-magnitude treatment: £1 = 100 ECU

• High-magnitude treatment: £1 = 10,000 ECU

Across treatments, the underlying choice problems are economically identical; only the

numerical representation of outcomes differs. Garagnani and Vieider (2025) show that

representing quantities outside an adapted numerical range alters the precision of inter-

nal magnitude representations. The scaling manipulation therefore generates exogenous

variation in outcome discriminability, while leaving incentives unchanged. This varia-

tion allows us to test whether decision noise increases monotonically as discriminability

falls—as predicted by encoding-based models—or instead follows the inverse-U pattern

implied by Bayesian decoding models.

The experiment was conducted online using Prolific (UK), with a target sample of 200

subjects per treatment. The median completion time was 14 minutes. Subjects were

compensated for their time in accordance with Prolific’s payment guidelines. In addition,

one out of every ten subjects was randomly selected to receive an additional performance-

based payment determined by the outcome of one randomly chosen decision.

4.2 Analysis

I estimate the main behavioural parameters using the Bayesian-inference model of Viei-

der (2024b), which generalizes the KLW framework to settings in which both outcome

magnitudes and probabilities vary.11 This generalization is well suited to the present ex-
11A prominent related account of probability weighting is Frydman and Jin (2023), who derive non-

linear probability weights from an efficient-coding framework in which representational precision adapts
optimally to the environmental distribution of probabilities. Bayesian inference is used to characterize
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periment, as the richer stimulus space induces substantial variation in discriminability—

particularly in low-signal regions that are central to the empirical test. Importantly, all

core qualitative features of the KLW model are preserved in this specification, includ-

ing (i) the inverse-U-shaped relationship between discriminability and decision noise,

and (ii) the fact that this pattern is a behavioural prediction rather than a mechanical

consequence of the econometric specification.

The key idea of the model is that the log-odds of winning, ln
(

p
1−p

)
, and the relative log

cost–benefit ratio, ln
(
c−y
x−c

)
, are inferred from noisy internal representations. Bayesian

decoding of these noisy percepts yields the following probit choice equation:

Pr[(x, p; y) ≻ c] = Φ

γ ln
(

p
1−p

)
− β ln

(
c−y
x−c

)
− ln(θ)√

ν2oβ
2 + ν2pγ

2

 , (2)

where ln(θ) captures the weighted contribution from the prior, which is not of prime in-

terest here, and β ≜ τ2o
τ2o+ν2o

designates outcome-discriminability and γ ≜
τ2p

τ2p+ν2p
likelihood-

discriminability (all variables being defined as above, with the subscript p indicating the

probability, and the subscript o the outcomes).

The composite error term in the denominator reflects independent noise contributions

from outcome and probability representations. Because the experimental manipulation

targets numerical magnitude of monetary outcomes, variation in decision noise is ex-

pected to arise primarily through changes in outcome discriminability β, while likelihood

discriminability γ remains comparatively stable. As a result, the empirically relevant

variation in stochastic choice is governed primarily by β(1− β), directly paralleling the

role of α(1− α) in the KLW model.

Following Vieider (2024b), I place outcome and probability discriminability on a common

representational scale by setting νo = νp = ν in estimations. This restriction reflects the

assumption that numerical magnitude and probability are encoded with comparable

baseline noise, while allowing discriminability to differ across dimensions through the

prior variances τ2o and τ2p . In the presence of independent variation in p, x, and c, this

optimal decoding under this coding scheme and to derive the implied certainty-equivalent mapping.
However, Bayesian inference does not govern stochastic choice itself: the model does not generate a
Bayesian stochastic choice equation linking posterior uncertainty to choice variability. The present anal-
ysis instead focuses on models in which Bayesian decoding directly determines the structure of stochastic
choice, yielding distinct predictions for how decision noise varies with discriminability.
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normalization ensures separate identification of β and γ.12

I estimate equation (2) using hierarchical Bayesian methods in Stan (Carpenter et al.,

2017). The hierarchical structure regularizes noisy individual-level estimates in a prin-

cipled way while preserving genuine heterogeneity. Population-level parameters receive

weakly informative but proper hyperpriors. Convergence diagnostics include R̂ statistics,

checks for divergent transitions, and inspection of posterior correlation structures. All es-

timation details are provided in Online Appendix C, and Vieider (2024a) offers a tutorial

introduction to hierarchical Bayesian estimation of decision models in Stan.

4.3 Results

I begin by examining how the experimental manipulation affects the parameters recov-

ered from the econometric model. Unless otherwise noted, all reported p-values refer to

two-sided Wilcoxon rank-sum tests applied to the posterior means of the individual-level

parameters obtained from the hierarchical Bayesian estimation.

Manipulation checks. Panel A of Figure 4 displays empirical cumulative distribu-

tion functions (eCDFs) of the estimated outcome-discriminability parameter β across

the three ECU-multiplier conditions. The distributions exhibit a strict monotonic or-

dering: discriminability is highest in the low-multiplier treatment, intermediate in the

medium treatment, and lowest in the high-multiplier treatment. Pairwise comparisons

confirm that all differences are statistically significant (p < 0.001 in each case). We

also observe substantial heterogeneity within each treatment, and importantly, a non-

negligible mass of observations with β < 1
2 , corresponding to regimes in which internal

noise outweighs the signal in Bayesian decoding. This confirms that increasing the ECU

multiplier systematically reduces outcome discriminability and generates the exogenous

variation required for the main empirical test.

Panel B turns to the distribution of the estimated decision-noise parameter, ω ≜

ν
√

β2 + γ2, which corresponds to the composite standard deviation of the probit error

term in equation (2) under the maintained restriction νo = νp = ν. The ordering across

treatments is now markedly different. The low-ECU treatment exhibits intermediate
12Online Appendix D reports alternative specifications that place β and γ on a common prior-variance

scale and provides simulation evidence of full parameter recoverability.
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Figure 4: Treatment effects on outcome-discriminability and decision noise
Treatment level distributions of key parameters. Panel A shows the empirical cumulative distribution
functions per treatment of outcome-discriminability β. Panel B shows the empirical cumulative distribution
functions of decision noise ω.

levels of decision noise, whereas the high-ECU treatment—despite producing the lowest

outcome discriminability—shows the lowest levels of decision noise (p < 0.001 in both

pairwise comparisons). The medium-ECU condition displays a slight but statistically in-

significant increase in decision noise relative to the low-ECU condition (p = 0.282).

Taken together, Panels A and B already point to a clear departure from the monotonic

predictions of encoding-based models. Reducing stimulus discriminability does not lead

to a monotonic increase in decision noise. Instead, decision noise declines again in

the high-noise regime, providing initial evidence for the inverse-U relationship between

discriminability and stochastic choice implied by Bayesian decoding.

Bayesian regression to the mean reins in choice stochasticity. Our key interest

lies in the individual-level relationship between outcome discriminability β and decision

noise ω ≜ ν
√

β2 + γ2. Bayesian decoding predicts that decision noise should be non-

monotonic and inverse-U shaped in outcome discriminability: as internal signals become

increasingly noisy, posterior beliefs place greater weight on the prior mean, which even-

tually stabilizes behaviour and reduces stochasticity.

Panel A of Figure 5 plots outcome discriminability β on the horizontal axis against

decision noise ω on the vertical axis. The scatterplot reveals a pronounced inverse-U
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Figure 5: Relationship between outcome discriminabiity and decision noise
Relationship between outcome discriminability and decision noise. Panel A shows a scatter plot of outcome
discriminability β on the horizontal axis, against decision noise ω on the vertical axis. Panel B plots the
portion of error variance driven by the outcome dimension, β (1−β) on the horizontal axis against decision
noise ω on the vertical axis. In both cases the points have been fit by a quadratic regression line. Some
extreme observations have been removed to improve the visual experience.

pattern: decision noise is highest at intermediate levels of discriminability and declines

both when discriminability is very low and when it is very high. A quadratic regression

of decision noise on outcome discriminability confirms this pattern: the linear term is

strongly positive (β̂1 = 1.15, p < 2 × 10−16), the quadratic term strongly negative

(β̂2 = −1.10, p < 2× 10−16), and the implied maximum occurs at β̂ ≈ 0.52.

Panel B presents the same relationship using the canonical inverse-U transformation

β (1−β) that governs the variance term in the Bayesian posterior. When plotted on this

scale, decision noise increases monotonically in β (1− β), which attains its maximum at

β = 0.5. This pattern follows directly from the structure of Bayesian decoding: noise

is smallest when internal signals are either highly reliable or entirely uninformative (in

which case the posterior collapses onto the prior), that is, when β → 0 or β → 1 and

hence β (1 − β) → 0. Decision noise is largest when noisy signals and heterogeneous

priors interact most strongly, namely at β ≈ 0.5, where β (1− β) is maximized.

In Appendix D.1, I re-estimate all parameters using the original KLW model in equa-

tion (1). Despite the richer probability variation in the present experiment—which the

KLW specification was not designed to accommodate—the key qualitative patterns are

unchanged: (i) outcome discriminability varies systematically across treatments, and
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(ii) decision noise declines again at low discriminability, consistent with Bayesian re-

gression toward the prior mean. Together, these results provide strong empirical sup-

port for Bayesian decoding and contradict the monotonic stochastic-choice predictions

of encoding-based models.

A doubly counterintuitive nonparametric pattern. So far, the analysis has re-

lied on parameters recovered from a structural model to contrast the predictions of

encoding-based accounts with those of Bayesian inference. I now show that the central

findings replicate using entirely nonparametric indices that capture the same underly-

ing concepts of discriminability and stochasticity, without imposing any functional-form

restrictions. This step is important for two reasons. First, it rules out the possibility

that the inverse-U pattern documented above is an artefact of the particular econometric

specification. Second, it demonstrates that the key behavioural prediction of Bayesian

decoding emerges directly in the raw choice data, independently of how decision noise is

parameterized. As we will see, the resulting patterns are doubly counterintuitive from

the perspective of encoding-based models: reducing discriminability does not monoton-

ically increase choice variability, and the lowest levels of discriminability are associated

with greater, not weaker, behavioural coherence. These patterns are, however, exactly

those implied by Bayesian regression toward the prior mean.
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Figure 6: Nonparametric analysis of likelihood-sensitivity and stochastic dominance violations
The figure shows a nonparametric analysis of the relationship between likelihood-sensitivity in risky choice
and first-order stochastic dominance violations. Panel A shows eCDFs for likelihood-sensitivity across
treatments and subjects. Panel B shows a scatter plot of the nonparametric likelihood sensitivity index on
the horizontal axis, against the nonparametric index of stochastic dominance violations on the vertical axis.
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Panel A of Figure 6 displays empirical cumulative distribution functions (eCDFs) of a

nonparametric index of likelihood sensitivity. This index captures how sharply a sub-

ject’s probability of choosing the risky option responds to changes in the probability of

receiving a fixed prize of £22. It is constructed from normalized differences in stochastic

certainty-equivalent approximations taken symmetrically around p = 0.5.13 The index

equals 1 under perfect likelihood sensitivity (as in EU), values below 1 indicate insen-

sitivity, and values above 1 indicate oversensitivity. Conceptually, this index serves as

a nonparametric analogue of the γ/β ratio governing likelihood sensitivity in the struc-

tural model in equation (2).14 Decreasing outcome-discriminability β is then predicted

to increase likelihood-sensitivity γ/β.

The eCDFs exhibit a striking monotonic ordering that mirrors the ordering of outcome

discriminability β across treatments. Likelihood sensitivity is lowest in the 1 ECU con-

dition, higher in the 100 ECU condition, and highest in the 10,000 ECU condition. In

other words, as outcome representations become noisier, subjects become more sensitive

to probability differences. This pattern runs counter to encoding-based accounts, which

predict that increased noise in one dimension should attenuate sensitivity overall. By

contrast, Bayesian decoding predicts that unreliably encoded information is discounted

rather than amplified, preventing noise from propagating across dimensions and allowing

sensitivity along the remaining dimension to be preserved. These nonparametric findings

closely parallel those reported by Oprea and Vieider (2025), who examine the effects of

experimentally induced noise in the outcome versus probability dimension on average

choice patterns using a different dataset.

Panel B plots the same likelihood-sensitivity index (horizontal axis) against a nonpara-

metric measure of individual-level violations of first-order stochastic dominance (vertical

axis). I focus on a dimension-specific notion of dominance violations, holding probabili-

ties fixed and varying outcomes. This choice aligns the nonparametric measure directly

with the experimental manipulation, which increases noise in the encoding of outcomes

rather than probabilities. Specifically, a violation is recorded whenever, for a given prob-
13For each probability pair {p, 1−p} in {0.9:0.1, 0.8:0.2, 0.7:0.3}, I construct a stochastic certainty-

equivalent proxy from the subject’s choice proportion for the risky option. The likelihood-sensitivity
measure for each pair is the normalized difference in choice proportions between the high- and low-
probability presentations of the same lottery; normalization divides the difference in choice proportions
by the corresponding difference in objective probabilities. The individual-level index is obtained by
averaging these normalized differences across the three probability pairs.

14This becomes apparent when both numerator and denominator are multiplied by 1/β.
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ability p, a subject exhibits non-monotonic choices as the sure amount c increases. A

violation is therefore defined as multiple switching (e.g., choosing the lottery, then the

sure amount, and then the lottery again).15 The resulting pattern forms—once again—a

pronounced inverse-U shape.16

This pattern is doubly unintuitive. First, from a standard noise-based perspective, one

would expect more stochastic-dominance violations in the high-noise regime. Yet viola-

tions are lowest precisely when outcome-coding noise is greatest (and hence likelihood

oversensitivity is most pronounced). Within the logic of the Bayesian-decoding frame-

work, this occurs because regression toward the prior mean stabilizes behaviour when

the signal is highly uninformative. Second, one might expect low likelihood sensitivity to

mechanically generate more dominance violations, as choices become less responsive to

probability differences. Yet violations are remarkably rare among subjects with very low

sensitivity to changes in probabilities. Instead, the largest number of violations arises for

subjects with intermediate discriminability, where noisy signals and prior expectations

interact most strongly.

From the perspective of economic rationality, this pattern appears paradoxical. It is pre-

cisely the subjects with near-perfectly calibrated likelihood sensitivity—those whose be-

haviour most closely resembles the expected utility benchmark—who exhibit the largest

number of stochastic-dominance violations. In other words, behaviour that appears most

“rational” from the perspective of the deterministic normative benchmark model coincides

with the greatest instability in choice. Understanding this pattern requires a different

conception of rationality. Conditional on noisy internal representations, Bayesian decod-

ing constitutes an optimal response to uncertainty. It is precisely this optimality that

generates the coexistence of near-perfect probability sensitivity with heightened stochas-

ticity in choice. Randomness in behaviour, rather than reflecting cognitive failure, can

therefore be a direct consequence of optimal inference under noise.
15This outcome-conditional definition of dominance violations is most consistent with the present

manipulation of coding noise. Defining violations along the probability dimension while holding outcomes
fixed yields very similar results: a violation is then recorded whenever a subject switches from preferring
the lottery at probability p to preferring the sure amount at a higher probability p′ > p. These results
are reported in Online Appendix C.1.

16This is confirmed by a quadratic regression: both the linear term (b1 = 65.4, p < 2×10−16) and the
negative quadratic term (b2 = −30.8, p < 2× 10−16) are strongly significant, indicating that violations
rise with sensitivity at low values of the index but decline again at higher values.

29



5 Conclusion

This paper asked what stochastic choice reveals about the processes that generate be-

haviour. Rather than treating randomness as an exogenous disturbance, I examined

generative models in which both average discriminability between choice options and

stochasticity across choices arise endogenously from noise in internal representations.

Encoding-based models predict that choice variability should increase monotonically as

options become harder to discriminate. Bayesian decoding, by contrast, yields a sharply

different implication: regression toward prior expectations stabilizes behaviour when

signals become uninformative, suppressing stochasticity in the high-noise regime.

The experiment was designed to adjudicate between these competing accounts. By

rescaling outcomes into increasingly coarse numerical units, I generated exogenous vari-

ation in outcome discriminability while holding the underlying choice environment fixed.

Structural and nonparametric analyses converge on the same conclusion. Although dis-

criminability declines monotonically as outcomes are expressed on coarser numerical

scales, choice variability does not. Instead, the relationship between discriminability

and stochastic choice follows a pronounced inverse-U pattern: variability peaks at inter-

mediate discriminability and declines again when internal signals become very noisy. At

the same time, lower outcome discriminability is associated with greater sensitivity to

probabilities and fewer violations of stochastic dominance—patterns that run counter to

encoding-based accounts but follow directly from Bayesian decoding.

Taken together, these findings imply that stochastic choice bears the distinctive signa-

ture of Bayesian inference. Apparent randomness in behaviour is not simply the result of

imprecise encoding or independent errors, but reflects optimal decoding of noisy internal

signals using prior information about the environment. Efficient-coding considerations

may shape the fidelity of internal representations, but they operate within a decod-

ing architecture that constrains how noise is translated into behaviour. More broadly,

the results show that patterns of stochastic choice—far from being a nuisance—contain

systematic information that can be used to distinguish between competing models of

decision-making under risk.

From an economic perspective, these results have direct implications for how we think

about the relationship between tastes and choice variability. Deviations from expected-
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utility benchmarks need not reflect stable non-standard preferences, nor independent

errors of the kind assumed in random utility models, but may instead arise from op-

timal inference under representational noise. Conversely, this also implies—perhaps

paradoxically—that behaviour consistent with expected utility may be observed pre-

cisely in high-noise environments, and need not correspond to stable underlying tastes

at all. Adjudicating whether observed behaviour truly reflects preferences, rather than

the structured consequences of noise, therefore requires careful attention to the structure

of stochastic choice data—the central insight of this paper.
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ONLINE APPENDIX

A Simulation details for Figure 3

To illustrate the qualitative predictions of a heteroscedastic random-utility model, I

simulate binary risky choices under a probit specification with independent additive

noise. The simulation proceeds in four steps.

(i) Lottery construction. Risky lotteries take the form (x, p), where the prize x

ranges from 60 to 200 in steps of 20, and the probability takes one of two values p ∈

{0.40, 0.55}. The sure amounts c range from 8 to 160 in steps of 8. I retain only

dominated pairs with c < x, yielding the choice set

S = {(x, p), c : x ∈ {60, . . . , 200}, c ∈ {8, . . . , 160}, p ∈ {0.40, 0.55}, c < x}.

(ii) Heterogeneous preference and noise parameters. I generate N = 300 sim-

ulated individuals. Each individual is endowed with: (i) a CRRA curvature parame-

ter

ρi ∼ Uniform(0, 1),

and (ii) a noise parameter

σi ∼ Lognormal(log 5, 0.92),

which governs the magnitude of the random disturbance in the probit model.

(iii) Sampling of choice problems. For each individual i, I draw 21 choice problems

at random (with replacement) from S and combine these with the full set of problems

once, producing a mixed design with both common and idiosyncratic choice sets. The

resulting dataset contains multiple observations per individual on a diverse set of lotter-

ies.

(iv) Stochastic choice generation. Utility for each lottery is given by the CRRA

specification u(x) = x1−ρi (with the usual logarithmic limit case). The deterministic
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utility difference for individual i on choice problem j is therefore

∆ij = pj x
1−ρi
j − c 1−ρi

j .

Choices follow a probit random-utility specification with heteroscedastic noise (i.e. the

noise term is individual-specific):

Pr((xj , pj) ≻ cj | i) = Φ

(
∆ij√
2σi

)
,

and the observed binary choice is generated as

yij ∼ Bernoulli

(
Φ

(
∆ij√
2σi

))
.

This simulated dataset is then analyzed using the same estimation procedures as for

the empirical data, allowing me to compare the nonparametric patterns implied by a

standard heteroscedastic RUM with those observed in the experiment.

Hierarchical Bayesian estimation of the KLW model

For each choice problem i for individual n, the risky option is a lottery (xi, pi) and the

sure option is ci. As in the main text, I rewrite the deterministic component of the KLW

decision index in terms of outcome ratios and probabilities,

ℓi = log

(
xi
ci

)
, log pi = log(pi).

At the individual level, the KLW model is parameterised by a coding-noise parameter

νn > 0 and a response-noise parameter σn > 0. These are mapped into the signal

weight

αn =
σ2
n

σ2
n + ν2n

and the effective probit scale

ωn =
√
2 νnαn =

√
2

σ2
nνn

σ2
n + ν2n

,
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as derived in Section 3. Conditional on (αn, ωn), the choice probability for individual n

on trial i is

Pr
(
(xi, pi) ≻ ci | n

)
= Φ

(
αn ℓi + log pi

ωn

)
,

and the observed choice is

yin ∼ Bernoulli

(
Φ

(
αn ℓi + log pi

ωn

))
.

To allow for heterogeneity across subjects, I place a bivariate normal prior on the log-

parameters (log νn, log σn):log νn

log σn

 ∼ N2

(
µ, Σ

)
, Σ = diag(τ )R diag(τ ),

where µ = (µ1, µ2)
⊤ is a vector of population means, τ = (τ1, τ2)

⊤ is a vector of

population standard deviations, and R is a 2× 2 correlation matrix.

Priors are chosen to be weakly informative on the log scale:

µj ∼ N (0, 5), j = 1, 2; τj ∼ Exponential(5), j = 1, 2; R ∼ LKJ(4).

The normal priors on µj imply that νn and σn are a priori spread over several orders of

magnitude (since log νn and log σn are typically between −10 and 10 with overwhelming

probability). The exponential priors on τj favour moderate between-subject heterogene-

ity while still allowing large values, and the LKJ prior with shape parameter 4 puts mild

weight on correlations near zero but does not rule out strong correlations. Overall, these

priors are deliberately diffuse: their role is to stabilise inference without imposing tight

a priori restrictions on the population distribution of (νn, σn).

B Contextual Utility and Random Preferences

This section examines whether two fixed of the random-utility pathology described in the

literature—contextual utility and random-preference specifications—alter the qualitative

predictions on the relationship between discriminability and decision noise documented

in the main text.
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B.1 Contextual utility

Wilcox (2011) contextual-utility correction was developed to address a well-known issue

in estimating expected-utility (EU) models with random-utility error. In a standard

EU–RUM specification,

U(x, p) = p u(x), U(c, 1) = u(c),

the curvature of u(·) interacts mechanically with the range of outcomes: changing the

scale of the stimulus space (for example by multiplying all outcomes by a constant) alters

the effective steepness of the deterministic index and thereby the sensitivity of choice

probabilities to payoff differences. Contextual utility introduces a simple normalization

that rescales u(·) within each display or context.

Let k index the context (here corresponding to the ECU scaling level). Each context k

includes a lower and upper outcome bound, xk and xk. The contextual transformation

replaces u(·) with an affine normalization,

uk(x) =
u(x)− u(xk)

u(xk)− u(xk)
,

which maps the context-specific minimum to 0 and the maximum to 1. Preferences

remain EU, but the scale of the deterministic index depends on the range of outcomes

shown in context k.

In each context, choices are generated from the transformed deterministic utilities

Uk(x, p) = p uk(x), Uk(c, 1) = uk(c),

combined with a random-utility error term. Under a probit specification,

Pr
(
(x, p) ≻ c | k

)
= Φ

(
Uk(x, p)− Uk(c, 1)

σk

)
,

where σk is the (context-specific or common) noise scale. Because the contextual trans-

formation is affine, it preserves the ratio-scale structure of EU but simply rescales the

deterministic difference Uk(x, p)− Uk(c, 1).

Importantly, the contextual adjustment enters **only in the numerator**. Noise remains

37



an exogenous additive term appended at the final stage, and the model retains the

core implication of heteroscedastic RUM: as discriminability declines, the denominator

dominates and choice probabilities collapse monotonically toward 1/2. As shown in

the simulations below, incorporating contextual utility does not generate the inverse-U

pattern in decision noise predicted by Bayesian decoding; the qualitative monotonicity

of RUM is unchanged.

B.2 Random-preference specifications

Random-preference models replace a fixed utility function with a distribution over utility

indices, typically by assuming that each choice instance draws a parameter θ that governs

risk attitudes or utility curvature. This relocates randomness from an additive error

term (as in classical RUM) to the underlying preferences themselves. As Apesteguia and

Ballester (2018) stress, such models can repair several comparative-statics pathologies

of RUM applied to EUT: choice probabilities can be made monotone in attributes even

when the standard additive-error specification would violate monotonicity. In that sense,

random preferences improve the link between economic structure and observed choice

probabilities.

However, this change in where randomness enters the model does not introduce a mecha-

nism akin to Bayesian regression to the mean. Let Uθ denote a von Neumann–Morgenstern

utility function indexed by a random parameter θ, and let A and B be two lotteries. A

random-preference model implies

Pr(A ≻ B) = Pr(Uθ(A)− Uθ(B) > 0) = Pr
(
∆(A,B

∣∣θ) > 0
)
,

where ∆(A,B
∣∣θ) is a deterministic function of the stimuli for each θ. Changing the

discriminability of the lotteries affects ∆ through the payoffs and probabilities, and hence

shifts the measure of θ for which A is preferred to B. But there is no internal prior over

outcomes or probabilities, and no encoding–decoding stage in which the variance of the

decision index can shrink when the signal becomes uninformative. All stochasticity is

driven by variation in θ.

From an econometric perspective, this implies that random-preference models and Bayesian-

decoding models make fundamentally different predictions for how decision noise should
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behave as discriminability varies. In Bayesian models, noise arises from corrupted inter-

nal representations, and when the signal is very weak the decoder regresses toward the

prior, reducing the dispersion of the decision index and stabilising choice. In random-

preference models, by contrast, the distribution of θ is fixed, and there is no structural

link between low discriminability and a reduction in effective noise. Any inverse-U re-

lationship between discriminability and stochastic choice would therefore have to be

imposed indirectly via the assumed distribution of preferences or the design of the stim-

ulus space, rather than emerging as a generic implication of the model. In particular,

random preferences do not predict the specific pattern highlighted in this paper: low

decision noise when discriminability is either very high or very low, and maximal noise

at intermediate levels of discriminability.

C Bayesian estimation details

In this section I describe the hierarchical Bayesian estimation procedure used to recover

individual-level psychophysical parameters from the experimental data. Each choice

problem i for individual n consists of a risky lottery (xi, pi) with lower outcome ℓi and

higher outcome hi, evaluated against a sure amount ci. Two transformed regressors are

constructed:

lcbi = log

(
ci − ℓi
hi − ci

)
, llri = log

(
pi

1− pi

)
,

corresponding respectively to the log-relative position of the sure outcome within the

risky payoff range, and the log-likelihood ratio of the probability pi.

Individual-level parameters. Each individual n is characterised by five positive psy-

chophysical parameters:

νn, σo,n, σp,n, ηn, ξn.

The parameter νn governs the overall noise in the internal code (‘coding noise’). The

parameters σo,n and σp,n control the noise in the outcome and probability channels,

respectively. The parameters ηn and ξn capture the idiosyncratic prior means for out-

comes and probabilities in the Bayesian decoding stage. All parameters are defined on
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the log-scale for estimation convenience:

(log νn, log σo,n, log σp,n, log ηn, log ξn) ∼ N5(µ,Σ).

Signal weights and effective scale. Following the psychophysical derivations in Sec-

tion 3, the model implies separate signal weights for outcomes and probabilities:

αn =
σ2
o,n

σ2
o,n + ν2n

, γn =
σ2
p,n

σ2
p,n + ν2n

.

These govern the extent to which decoded internal values depend on current stimuli

versus prior expectations. The effective probit scale is

ωn = νn
√
α2
n + γ2n,

which reflects the joint contribution of coding noise and Bayesian regression effects.

Choice probability. For individual n on trial i, the decision index implied by the

Bayesian decoder is

din =
γn llri + (1− γn) log(ηn)−

[
αn lcbi + (1− αn) log(ξn)

]
ωn

.

The associated choice probability for the risky option is

Pr
(
(ℓi, hi, pi) ≻ ci | n

)
= Φ(din),

and the observed choice is generated as

yin ∼ Bernoulli
(
Φ(din)

)
.
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Hierarchical structure and priors. To allow for flexible heterogeneity across indi-

viduals, the five log-parameters are given a population-level multivariate normal prior,

θn =



log νn

log σo,n

log σp,n

log ηn

log ξn


∼ N5(µ, Σ), Σ = diag(τ )R diag(τ ),

with weakly informative priors:

µj ∼ N (0, 10), τj ∼ Exponential(1), R ∼ LKJ(1).

The normal priors on the population means are deliberately diffuse, corresponding to

several orders of magnitude variation in the implied scale parameters. The exponential

priors on the standard deviations favour moderate heterogeneity while allowing large

variation in the population. The LKJ(1) prior places a uniform density over correlation

matrices, avoiding any a priori bias toward independence.

These priors are chosen to be minimally informative. Their purpose is not to regu-

larise behaviour toward any particular psychophysical structure, but simply to stabilise

estimation while allowing the posterior to be driven almost entirely by the data. In

practice, posterior inferences are highly robust to reasonable alternative choices of prior

scale.

Estimation workflow

All models are estimated in Stan using Hamiltonian Monte Carlo (HMC) as implemented

in the No-U-Turn Sampler (NUTS). For each specification, I run four parallel Markov

chains with 2,000 iterations each, discarding the first 2,000 iterations of each chain as

warm-up. This yields 4,000 post warm-up draws for posterior inference.

Priors are specified as described above and are deliberately weakly informative, ensur-

ing that posterior inferences are driven primarily by the likelihood rather than by prior

regularisation. All continuous parameters are sampled on an unconstrained scale and

transformed to the positive reals where appropriate, which improves sampler stabil-
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ity.

Convergence is assessed using standard diagnostics. I report the potential scale reduction

factor R̂ for all parameters and generated quantities, requiring values below 1.02 as

evidence of satisfactory mixing. Effective sample sizes (both bulk and tail) are examined

to ensure that posterior quantities are estimated with sufficient precision. Trace plots

and rank plots are inspected to verify that the chains explore the posterior without

divergent transitions or pathological behaviour.

Posterior summaries reported in the main text and online appendix are based on the

aggregated post warm-up draws from all four chains. Point estimates are posterior

means unless otherwise stated, and uncertainty is summarised using central 95% posterior

credible intervals.

C.1 Stability analysis and parameter recoverability

To assess whether the Bayesian decoder can recover the underlying psychophysical pa-

rameters from finite binary choice data, I conduct a recoverability exercise based on fully

simulated choices. The simulation proceeds in three steps: (i) construction of the choice

set; (ii) generation of individual-level psychophysical parameters; and (iii) stochastic

choice generation under the full Bayesian model.

(i) Choice set. Each simulated choice consists of a risky lottery (h, p) that pays a high

outcome h = 140 with probability p ∈ P and a low outcome y = 0 otherwise, evaluated

against a sure amount c ∈ C. The probability set is

P = {0.05, 0.10, 0.15, 0.30, 0.45, 0.50, 0.55, 0.60, 0.70, 0.85, 0.90, 0.95},

and the set of sure amounts is

C = {10, 15, 20, . . . , 130}.

The Cartesian product P ×C yields the choice set S containing all combinations of (p, c)

paired with the fixed lottery (h = 140, y = 0).

For realism, each simulated individual is later presented with the full choice set together

with a small random sample of additional repeated trials (six per individual) to mimic
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the uneven design of the empirical dataset.

(ii) Psychophysical parameters. I simulate N = 100 heterogeneous individuals.

Each individual is endowed with four positive psychophysical parameters:

νn > 0, σo,n > 0, σp,n > 0, ξn > 0.

These govern the coding noise, the outcome-channel noise, the probability-channel noise,

and the prior mean on outcomes, respectively. Parameters are drawn from diffuse dis-

tributions chosen to span a wide region of the parameter space:

νn ∼ |N (0.6, 0.32)|,

σo,n ∼ |N (0.9, 0.42)|,

σp,n ∼ |N (0.7, 0.352)|,

ξn ∼ |N (0.7, 0.32)|,

where the absolute value ensures positivity. The Bayesian decoder implies two signal

weights,

αn =
σ2
o,n

σ2
o,n + ν2n

, γn =
σ2
p,n

σ2
p,n + ν2n

,

and a prior-adjusted outcome factor,

δn = ξ 1−γn
n .

The effective probit scale is

ωn = νn
√

α2
n + γ2n.

(iii) Stochastic choice generation. For individual n facing choice problem (pi, ci),

the Bayesian decoder implies the decision index

din =
γn log pi

1−pi
− αn log

(
ci−y
h−ci

)
+ log(δn)

ωn
.

The corresponding choice probability for selecting the risky option is

Pr
(
(h, pi) ≻ ci | n

)
= Φ(din),
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and the observed choice is drawn as

yin ∼ Bernoulli(Φ(din)) .

(iv) Resulting dataset. The final simulated dataset contains all choice pairs (pi, ci)

crossed with all simulated individuals, plus six additional randomly sampled repeated

problems per individual. This construction yields a dataset closely mirroring the struc-

ture and heterogeneity of the empirical data, allowing a direct test of whether the hier-

archical Bayesian estimator can recover the individual-level psychophysical parameters

from finite, realistically noisy choice data.
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Figure 7: Recoverability of Bayesian Inference Model parameters
Recoverability of Bayesian Inference Model parameters
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Figure 7 shows that parameter recoverability is indeed excellent. All spearman correla-

tions between simulated and recovered parameters fall above 0.9.

D Analysis: Robustness checks

I here present various robustness checks for the main analysis described in the body

of the paper. In particular, I 1) re-estimate the data using the KLW model instead of

the generalization including probability transformations; 2) check robustness to putting

β and γ on a common variance scale instead of a common noise scale; and 3) I com-

pare the nonparametric likelihood-sensitivity result to an equivalent result based on the

parametric estimates.

D.1 Re-estimation using the KLW model

Figure 8 displays the relationship between individual-level discriminability (α) and the

estimated decision-noise parameter
√
2 να obtained from fitting the KLW model to the

experimental data. With the horizontal axis reversed, movement from left to right cor-

responds to a transition from high to low discriminability. The key pattern predicted

by the Bayesian inference mechanism is clearly present: as discriminability declines, the

estimated decision noise falls steadily. This is the precise opposite of the qualitative

prediction shared by likelihood-based models such as Thurstone, Decision-by-Sampling,

or likelihood-only efficient coding, all of which imply that noise should rise monotoni-

cally as discriminability worsens. The distinctive Bayesian signature is therefore readily

apparent in the experimental data.

We do not, however, observe uniformly low noise for the highest levels of discriminability

at the extreme left of the graph. Although most observations in this region come from the

low-ECU treatment, the estimated decision noise exhibits substantial vertical dispersion:

subjects with very similar discriminability display widely different noise levels. This

dispersion is readily explained. When outcome discriminability is high, the KLW noise

term
√
2 να becomes increasingly sensitive to heterogeneity in how subjects react to

probabilities. In the present experiment, probability sensitivity varies markedly across

individuals, and the as-if expected-utility representation embedded in KLW does not

model such heterogeneity explicitly. The residual vertical spread at high discriminability
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Figure 8: Outcome-discriminability and decision noise in the KLW model

therefore reflects cross-subject variation in probability processing, not a failure of the

Bayesian-decoding mechanism.

D.2 Alternative prior-variance parameterization

Next, we examine the robustness of the inverse-U relationship to the specific econometric

assumptions adopted in the main text. In the benchmark estimation in the main text,

I imposed a single coding-noise parameter ν shared across the outcome and probability

channels, i.e. ν = νo = νp. Here, I relax this restriction and allow the coding-noise

parameters to differ, νo ̸= νp. To ensure that the two signal weights β (for outcomes)

and γ (for probabilities) remain on a common scale—and that they remain identifiable

from choice data alone—I impose a common prior variance, σ ≜ σo = σp, in the Bayesian

decoder.

Figure 9 plots the resulting relationship between outcome discriminability β (horizontal

axis) and decision noise ω ≜
√
ν 2
o β

2 + ν 2
p γ

2 (vertical axis). The inverse-U pattern is

reproduced cleanly: decision noise is lowest when the signal is either very strong or very
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Figure 9: Outcome discriminability and decision noise under a common prior-variance scale.

weak, and reaches its maximum at intermediate discriminability. Allowing νo and νp to

differ therefore does not attenuate the key qualitative signature of Bayesian inference. If

anything, the flexibility introduced by heterogeneous coding noise sharpens the curvature

of the inverse-U, reinforcing the view that the pattern is intrinsic to Bayesian regression

to the prior rather than an artifact of the baseline parameterization.

D.3 Nonparametric noise measures

In the main text, I correlated the nonparametric likelihood-sensitivity index with a mea-

sure of stochastic dominance violations calculated conditioning on the probability p. The

reason was that this index seems to be reflect variation across outcomes, which is the

dimension for which coding noise is being manipulated in the experiment.

Here, I show that the key result of the inverse-U relation is robust to using a different

measure of stochastic dominance violations, calculated across p, i.e. holding all outcomes

constant and registering violations as a switch from choosing the lottery to choosing

the sure outcome as p increases. Figure 10 shows the correlation of this measure with

the nonparametric likelihood-sensitivity index. While the function peaks somewhat to

the right of the perfect sensitivity benchmark (after all, noise across probabilities is not

manipulated, and the mean is determined by signal exceeding noise), it is clearly inverse-

U shaped. This is confirmed by a quadratic regression, which has a linear term b1 =

66.695, and a quadratic terms b2 = −26.853, both significant with p < 2 ∗ 10−16.
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Figure 10: Likelihood-sensitivity and between-probability stochastic dominance violations

E Experimental materials and stimuli

All choice stimuli were constructed from a simple generative rule designed to ensure (i)

wide but controlled variation in likelihood discriminability, (ii) balanced coverage of prob-

abilities and sure amounts, and (iii) naturalistic spacing of risky and safe options.

The basic stimulus was a binary lottery (x, p) paying x > 0 with probability p and

0 otherwise, evaluated against a sure amount c. The construction proceeded in four

steps.

1. Base probability grid. The main set of risky options used a coarse grid of prob-

abilities,

p ∈ {0.1, 0.2, . . . , 0.9}.

2. Sure-amount bands centred on the expected value. For each probability p,

sure amounts were chosen from a band centred on the expected value of the lottery,
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EV(p) = px. The sure amount c was drawn from the integer range

c ∈ {⌊EV(p)− 10⌋, . . . , ⌈EV(p) + 6⌉},

truncated to lie in the global domain c ∈ {1, . . . , 21}. This rule keeps the risky and

sure options economically comparable while providing systematic variation in outcome

discriminability.

3. Two auxiliary lists with a lower prize. To broaden the range of risk-return

combinations, two additional blocks of trials were created in which the prize was set

to x = 20 instead of x = 22. These blocks used only p = 0.3 and p = 0.7, with sure

amounts generated by the same EV-centred rule as above. This yields two “matched”

lists differing only in the lottery prize.

4. A small set of repeated trials. To enable nonparametric reliability checks, a

random 15% subsample of the main x = 22 block was duplicated and flagged as repeat

trials. These repetitions were presented at different points in the sequence.

5. Final trial set. The three components—the full x = 22 block, the two x = 20

blocks, and the repeat subsample—were combined and sorted by (p, x, c) to generate

the final trial list. Each trial was also assigned a unique identifier. Probabilities were

displayed to subjects as integer percentages pcp = 100× p.

The resulting stimulus set provides a dense, well-controlled design that varies discrim-

inability through probability and outcome scaling while keeping the overall structure of

the task intuitive for participants.

The Instructions read as follows:

INSTRUCTIONS

Thank you for taking part in this study.

We will ask you to take repeated decisions involving lotteries. On each screen, you will

be asked to choose between a lottery and a sure amount of money.

Chances of winning the prize in the lottery are always indicated in percentages.
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Monetary payments are always indicated in Economic Currency Units (ECU).

At the end, you may be paid a bonus based on one of your choices: the conversion

factor for that bonus is 100 ECU to 1 pound.

There are no right or wrong answers—we are purely interested in your preferences.

Here is an example of a choice task:

In the example above, you are asked to choose between a lottery paying 1200 ECU with

a 50% chance (or else nothing), and a sure payment of 500 ECU.

If this is the randomly selected choice paid for real:

- If you selected the sure amount, we will pay you that amount

- If you selected the lottery, we will draw a ball from an urn containing 100 sequentially

numbered balls. If the ball extracted bears a number between 1 and 50 inclusive, we will

pay you the prize. If the ball contains a number between 51 and 100 inclusive, we will

pay you nothing.

You will be presented repeatedly with such tasks, and you are asked to indicate your

choice for each one of those tasks. Notice that both the amounts and the chances

involved may change from screen to screen. Please consider the information care-

fully and choose your preferred option.
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