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Abstract
I present a model that predicts well-known empirical deviations from exponential discounting to

emerge from the optimal Bayesian combination of noisily encoded time delays with prior information
about the statistics of the environment. I further show how the model is formally identical to a
setup under risk explaining deviations from expected utility maximization. The model thus provides
a unified, neuro-biologically founded perspective of the origin of decision “biases” across domains.
Biases result from an optimal process of Bayesian inference, which reins in noise in information
processing by adaptation to the decision environment. The model is generative in nature, and the
parameters describe causal drivers of choice behaviour. The model forms part of a series of papers
that show how choice patterns traditionally attributed to preferences may emerge from optimal
reactions to cognitive frictions in information-processing.

A great deal can be learned about rational decision making by taking into account [...] the

limitations upon the capacities and complexity of the organism, and by taking account of the fact

that the environments to which it must adapt possess properties that permit further simplication

[sic] of its choice mechanisms.

Herbert Simon (1956), p. 129

1 Motivation
I present a theoretical account of how stylized patterns of delay-discounting observed in

empirical work can emerge from the noisy neural coding and processing of the numeri-

cal quantities describing the choice situation. Commonly observed discounting anomalies

emerge from noise arising in mental computations due constraints inherent in the neural

architecture. Deviations from exponential discounting are characterized as optimal reac-

tions to such noise in mental processing. I further show that the model is formally identical

to models used to characterize decision-making processes under risk and uncertainty.

The model assumes that the mind is hard-wired to implement discounted (expected) util-

ity. Frictions in information processing, however, mean that the mind does not have direct
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access to the objective choice primitives presented to the decision-maker. Informational

frictions in representing and recombining choice primitives are optimally dealt with by ex-

ploiting prior information about the probability distribution of different choice primitives

in the environment. The decision process thus takes the form of a Bayesian inference prob-

lem, whereby observed choice patterns are causally driven by biases in inferences about

the true choice primitives. The inferences are nevertheless optimal, in the sense that they

minimize the mean squared error of the predictions over the course of many trials.

Relation to the delay-discounting literature. The model organizes many phenom-

ena that have been documented in empirical and theoretical work in psychology and

behavioural economics. A key prediction of the model is that discounting should be sub-

additive—i.e. measured discount rates will systematically decrease in the length of the time

period used to measure them—as first documented by Read (2001). Other than proposed

by Read (2001), however, present bias—a specific preference for the sooner outcome when

it occurs immediately (Laibson, 1997; Imai et al., 2021; Cheung et al., 2023)—emerges in

the model as a separate motive. Apparent hyperbolicity in delays of increasing length from

the present then occurs as a consequence of subadditivity. So does the ‘as soon as possi-

ble effect’ (Kable and Glimcher, 2010), which describes apparently-hyperbolic discounting

patterns for delays of increasing length from any given up-front delay.

The model also casts a new light on several findings in the delay-discounting literature

that may otherwise be considered puzzling. Take the finding that non-trivial discounting

is observed in experiments using monetary outcomes. Substantial discounting for money

is paradoxical from an economic point of view, since one would need to assume immedi-

ate consumption of any monetary payouts to explain it (Cohen et al., 2020). Cubitt and

Read (2007) showed that for discount rates exceeding the market borrowing rate no infer-

ences can be drawn on time preferences at all if one assumes agents to abide by standard

principles of economic rationality. Discounting of money is, however, natural based on

the noisy cognition perspective I present here, given that anomalies emerge based on the

noisy processing of time delays. At the same time, the noisy processing of rewards pre-

dicts differences in discounting patterns between money and consumption if such different

rewards are encoded with different fidelity. Finally, cognitive frictions in the processing of

rewards as well as time delays predicts an absolute magnitude effect (Thaler, 1981) under

empirically plausible conditions.
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Causal interpretation of parameters. The parameters of the model I present do not

have a descriptive, but a generative interpretation. They receive their meaning from their

role in the mental processing of choice primitives. In other words, they are supposed to

causally determine choice behaviour, rather than to merely describe and quantify it. The

key quantities of the model can indeed be measured neurally using brain activation signals

in fMRI studies (Kable and Glimcher, 2007; Barretto-García et al., 2023; de Hollander et

al., 2024). They can thus be used to make causal predictions about how behaviour ought

to change if the ease of information processing or the statistics of the environment change.

In this sense, the model builds bridges between neuro-biological and neurophysiological

predictions and behavioural predictions, thus contributing to the conscilience between the

social and biological sciences (Wilson, 1997; Glimcher, 2010).

Under some restrictions, the core parameters driving behaviour can also be estimated

from binary choice data in a static decision environment. While this is not the ultimate

goal or main strength of the model, such an implementation nevertheless overcomes issues

affecting the estimation of standard behavioural models. The choice of error models in

estimations of standard models is often arbitrary, which can adversely affect the inferences

one draws from estimations (Alós-Ferrer et al., 2021). Apesteguia and Ballester (2018)

showed forcefully how augmenting decision models under risk and time by an independent

error term (‘white noise’) results in non-monotonicities in the levels of risk aversion and

impatience predicted as a function of the utility difference between choice options, thereby

resulting in systematic distortions of parameters recovered from data. The model I present

here overcomes this issue. Given that the model is inherently stochastic, the error and

choice model interact, thus disciplining the behaviour of the choice equation.

Relation to noisy cognition and error literature. The model I present falls into a

class of recent models variously defined as ‘noisy cognition’ or ‘efficient coding’ models,

and which have emphasized how apparent biases in behaviour can emerge from processes

that are optimal from a neuro-biological and evolutionary point of view. Robson (2001a),

Robson (2001b), and Netzer (2009) present pioneering models endogenizing behavioural

predictions based on evolutionary reasoning. Subsequent papers by Steiner and Stewart

(2016), Herold and Netzer (2023) , and Netzer et al. (2024) extend this modelling ap-

proach to probability distortions, which are characterized as a ‘second best’ solution given

informational constraints.
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Formally, the model I propose falls into the class of Bayesian noisy cognition models. Such

models have long been used to model sensory-motor tasks in neuroscience (see Ma et al.,

2023, for a book-length treatment). Natenzon (2019) showed how correlation structures

in noisy signals could be used to rationalize behaviour that might otherwise seem evolu-

tionarily flawed. Khaw et al. (2021) prominently used a Bayesian noisy coding model to

explain small-stake risk aversion (see also Khaw et al., 2023).

The paper also relates to a series of recent empirical papers emphasizing the impact of

bounded rationality and neural constraints on choice behaviour (Enke and Graeber, 2023;

Oprea, 2024). In particular, Enke et al. (2024) show how many of the empirical phenomena

known from the delay-discounting literature can be induced in an atemporal environment,

which suggests that they may result from the complexity of the choice situation, rather

than from anything inherent to time. This account is perfectly consistent with the model

I present here.1

Finally, the model is related to a string of recent papers modelling delay discounting

as a result of errors or perceptual difficulties. For instance, Lu and Saito (2018) and

He et al. (2019a) derive predictions on time discounting based on randomness in choices

and preferences. Gabaix and Laibson (2022) predict hyperbolic discounting based on

the noisy perception of future utilities. These models are based on different intuitions

from the one I use here, and produce insights that are complementary to the ones I

present. They also make very different predictions from the ones emerging from the

present model, generally being aimed at explaining strongly decreasing impatience (or ‘true

hyperbolicity’) in discounting. I will return to this point when detailing the behavioural

predictions of the model.

2 Model
Below I will model decisions over time, while drawing parallels to decision-making under

risk. I will first discuss the key aspects underlying the Bayesian inference model, before

turning to behavioural implications.
1One important deviation from what I do here consists in the use of choice lists by Enke et al. (2024).

This means that the predictions I derive are not directly applicable to their setting, since the model I
present is geared specifically at binary choice. On why the differences between binary choices and such
choices collected into lists may matter, see Bouchouicha et al. (2024).
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2.1 The choice rule and its mental representation

I model standard tradeoffs between a larger reward x, paid at a later time τℓ, and a smaller

reward y < x, paid at a sooner time τs < τℓ. The model generalizes to more complex

tradeoffs—see Online Appendix B—but is ultimately geared at the simple tradeoffs making

up the bulk of the empirical literature.2 I start from a choice rule devoid of subjective

parameters3, under which the larger-later reward is chosen whenever

e−τℓx > e−τsy. (1)

This choice rule is optimal inasmuch as discounting is stationary, resulting in consistent

choice patterns over time.4 The substantial discounting of 100% per time unit reflects the

fundamental intuition underlying the model that patience—and perhaps the very meaning

of time—needs to be learned from experience. This take is consistent with extremely

pronounced discounting observed in children (Mischel and Ebbesen, 1970; Mischel et al.,

1989; Bettinger and Slonim, 2007), and with the emphasis put on education in economic

models endogenizing discounting (Doepke and Zilibotti, 2014; 2017).

I now rearrange the terms in (1) to emphasize the comparative nature of the tradeoffs

involved (see Scholten et al., 2014, for a similar modelling assumption). Taking the natural

logarithm of both sides for computational convenience (and without loss of generality—see

Online Appendix A), we obtain:

ln

(
p

q

)
> ln

(y
x

)
, (2)

where p ≜ e−τℓ and q ≜ e−τs . The left-hand side then takes the form of log-odds, which

shows parallels with decisions under risk by conceiving of the exponentials as probabilities.

In Vieider (2024a), I present a parallel model for risk, using exactly the same setup as

used here applied to uncertain events. Several papers have indeed argued that log-odds
2The model I propose is perceptual in nature, and the presentation format will thus be important in

determining inferences and hence choices. The focus on simple tradeoffs that constitute the workhorse of
experimental invstigations allows for the derivation of simple closed-form solutions, which will allow me
to develop the underlying intuitions.

3Note that this choice rule is used without loss of generality. Augmenting the choice rule by a nor-
matively low discount rate or by a concave utility function does not affect any of the conclusions derived
below. I thus focus on a minimalistic setup deprived of any further motives.

4This does not require the decision-maker to consciously implement such a choice rule. The framework
I present is best thought of as arising from working mechanisms internal to the mind, which may have
arissen from evolutionary pressures, and which are typically beyond the reach of the consciousness of the
decison-maker.
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may underly mental representations of stimuli in general (Gold and Shadlen, 2001; 2002;

Zhang and Maloney, 2012; Glanzer et al., 2019).

The central idea underlying the model is that choice primitives cannot be accessed directly,

but are instead encoded by signals suitable for neural representation and recombination.

This follows from the observation that choice primitives will have to be encoded and

manipulated by a finite number of neurons using electrical discharges or spikes before they

can inform a decision. I here assume that any noise arising from this process will apply

to the log-odds, and hence to time delays occurring between two payment options, since

ln
(
p
q

)
= ln

(
e−τℓ

e−τs

)
= −(τℓ − τs). This constitutes the natural counterpart to noise being

attached to the log-odds under risk (cfr. Khaw et al., 2023; Vieider, 2024b). It captures the

idea that much of the cognitive bottleneck affecting processing of real-world information

stems from higher-order cognitive information processing, rather than affecting purely

perceptual quantities (Drugowitsch et al., 2016; Zheng and Meister, 2024).5

Similarly to what happens for time delays, signals about the log reward ratio also ought

to be represented as being affected by noise. This captures the idea that errors arise from

quick comparative tradeoffs between choice options. Further assuming that the choice rule

is mentally implemented on (2) multiplied by −1 and logged once again for computational

convenience (this is not necessary, but simplifies things: see Online Appendix A, for an

alternative derivation), we obtain the following mental choice rule:

E
[
ln

(
ln

(
x

y

)) ∣∣ rr] > E [ ln(τℓ − τs) | rt] (3)

where rr is the mental representation of the reward ratio, and rt the mental representation

of the log-odds or time delay. I proceed to discussing the mental representation of time

delays and reward ratios in sequence.

The mental signal and the likelihood. Given limits on neuronal resources, the mental

signal rt (as well as rr, to be discussed below) will be affected by noise.6 Noise in mental
5This assumption is made without loss of generality. One could indeed easily add noise in the perception

of single time delays from the present τs and τℓ on top of what I model here. I forego this possibility to
keep the model tractable and parsimonious.

6Oprea and Vieider (2024) show how such noise may result if the underlying log-odds are encoded by a
Beta distribution, the parameters of which could sum up the firing rates of neurons and anti-neurons such
as discussed by Gold and Shadlen (2001). This follows from the observation that absolute accuracy can
only be obtained from a Beta distribution in the limit as its parameters jointly converge to infinity, where
it converges to a Dirac-delta distribution having all its probability mass attributed to a single point. Any
finite number of neurons dedicated to the coding will thus necessarily produce noisy representations, with
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representations and recombinations is indeed a hallmark of brain functioning (Dehaene

and Changeux, 1993; Dehaene, 2003; Knill and Pouget, 2004; Vilares and Kording, 2011;

Ma et al., 2023). For τs, τℓ > 0, I thus model the mental signal for the time delay between

two rewards as a single draw from the following likelihood function:

rt ∼ N ( ln(τℓ − τs) , ν
2
t ), (4)

where rt is a shorthand for rt | τℓ, τs, emphasizing that the signal is conditional on a specific

time delay τℓ − τs, and where the parameter νt quantifies average coding noise of time

delays.7 Representational noise will thus make observed behaviour stochastic, given that

the signal rt from two subsequent draws may be different even conditional on an identical

time delay τℓ − τs being presented to a decision-maker. The accuracy with which time

delays are perceived will be proportional to λt ≜ ν−2
t — the precision of the likelihood

function. The error is attached to the difference in delays from the present, as discussed

above.

Logarithmic representation of choice stimuli in the brain has received support from be-

havioural studies (Glanzer et al., 2019), has been proposed on grounds of computational

efficiency (Gold and Shadlen, 2001; 2002) and optimality for adaptation (Howard and

Shankar, 2018), and has received direct support from single-neuron measurements of the

activation functions of number neurons (Nieder and Miller, 2003; Dehaene, 2003; Nieder,

2016). Zauberman et al. (2009) have documented a logarithmic relationship between ob-

jective time delays from the present and subjective ratings of those delays. Cooper et al.

(2013) have shown that the neural activation signatures measured during a task in which

subjects are asked to rate time delays, without any outcomes involved, predicted later

choices between delayed rewards.

Logarithmic representations of time delays do, however, incur into issues when delays

become very small. Since limt→0 ln(t) = −∞, the resources needed to represent small

delays would increase unboundedly, thus contradicting the very resource-saving rationale of

noise decreasing in the allocation of neural resources at a decreasing rate.
7The use of a normal distribution is suggested by physiological and topographic evidence of neural

activations (Nieder and Miller, 2003; Dehaene, 2003; Harvey et al., 2013). The normality assumption
is further supported by the log-odds representation, since log-odds are usually normally distributed (a
fact that is often exploited in statistics; see e.g. Gelman et al., 2014, section 5.3). It has the distinctive
advantage of allowing for a transparent closed-form solution of the model. Gold and Shadlen (2001)
demonstrate the the qualitative conclusions will generalize to a variety of different distributions, as long
as they are single-peaked.
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logarithmic coding. To avoid this issue, I add a 1 to the objective time delays as suggested

in the literature (Petzschner and Glasauer, 2011; Howard and Shankar, 2018).8 I will thus

substitute s ≜ 1+τs if τs > 0, else s = 0, and ℓ ≜ 1+τℓ to model the mental representations

of the objective time delays in order to prevent the numerical representation from becoming

boundless as the time delay approaches 0. While this transformation is inconsequential

for τs > 0 since ℓ− s = τℓ − τs, it will have substantive implications for τs = 0.

Inference as optimal signal-decoding. In principle, a direct comparison of the delay

signal in (4) with the signal for the reward ratio would be sufficient to reach a decision (see

Thurstone, 1927). However, the average quality of decisions can be improved by combining

the noisy signal with prior information describing the probability distribution of choice

primitives in the environment. This captures the insight contained in the inspirational

quote by Herbert Simon at the beginning of this article—limitations to computational

capacity can be partly compensated by relying on regularities in the environment.

I assume that the following prior captures the statistics of the delay distributions in the

environment:

ln(ℓ− s) ∼ N ( ln(η) , ξ−1
t ), (5)

where ξt = σ−2
t is the precision of the prior and ln(η) its mean. The log-normal form of

the prior conforms to the observation that most delays one faces are short while some are

very long, and naturally reflects the non-negative nature of time delays. Limpert et al.

(2001) examined a large variety of naturally occurring data, and conclude that there is no

single case in which a normal distribution would fit those data better than a log-normal.9

This prior is best thought of as learned over a lifetime of experiences (as well as being

subject to local modification over the course of an experiment).10

Combining the likelihood in (4) with the prior in (5) by Bayesian updating, we obtain the
8The choice of 1 is somewhat arbitrary. The main justification for using 1 instead of a more flexible

parameter is to contrain the model and to avoid un-necessary inflation in the number of parameters. I
will discuss consequences for potential empirical identification farther below.

9In terms of the underlying log-odds representation, the distribution is most accurately characterized
as logit-normal. Normal distributions are very natural for such log-odds representations (cfr. Gelman et
al., 2014, section 5.6), and are popular in statistics for their numerical tractability (Atchison and Shen,
1980).

10Technically, this can be modelled by higher-level hierarchies, where decision-makers have prior expec-
tations applying across a variety of situations (see Friston, 2005, for neural and phylosophical foundations
for such an explanation). When plunged into a new situation such an experiment, decision-makers will
then start updating this hyperprior. Given noise in signals and inferences, such updating will generally
be slow, and hence conservative.
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following posterior distribution:

p [ ln(ℓ− s) | rt ] = N
(

λt

λt + ξt
rt +

ξt
λt + ξt

ln(η) ,
1

λt + ξt

)
, (6)

where 1
λt+ξt

= ν2σ2

ν2+σ2 is the variance of the posterior. The posterior mean obtains from

a simple linear combination of signal and prior mean, with the signal’s contribution de-

termined by the Bayesian evidence weight β ≜ λt
λt+ξt

= σ2

σ2+ν2
. I will thus refer to β as

time-discriminability, or where no ambiguity arises, simply as discriminability.

Proof. Let d ≜ ℓ−s, and write the likelihood as p(rt|d) ∝ exp
(
−λt

2 ( rt − ln(d) )2
)

and the

prior as p(d) ∝ exp
(
− ξt

2 ( ln(d)− ln(η) )2
)
. The posterior will be p(d|rt) ∝ p(d) p(rt|d).

Multiplying out the exponentials, rearranging, and completing the square we obtain (6).

A step-by-step derivation is shown in online appendix C.

To make the expression in (6) accessible to the experimenter, we will need to replace

the mental signal rt with an observable quantity. This can be done by means of the

response distribution, which—given stochasticity in rt | t—will capture the distribution of

the inferred time delay, given the true time delay. Let θ ≜ E[ ln(ℓ−s) | rt ] be the expected

delay inferred from the noisy signal. We then obtain:

p ( θ | τℓ, τs ) = N
(
β ln(ℓ− s) + (1− β) ln(η) ,

λt

(λt + ξt)2

)
, (7)

where λt
(λt+ξt)2

= ν2σ4

(ν2+σ2)2
is the variance of the response distribution. This expression

encapsulates the fact that the experimenter can only observe the average inference of

the decision-maker. Stochasticity in the unobserved mental signal rt conditional on one

and the same delay being presented repeatedly then takes the form of variability in the

response as captured by the variance of the response distribution.

Proof. Let z ∼ N (ẑ , σ2
z). From the properties of the normal distribution, we know that

a + b z ∼ N (a + b ẑ , b2 σ2
z). The result in (7) follows by substituting a = (1 − β) ln(η),

z = rt, ẑ = ln(ℓ− s), b = β, and σz = νt.

The substantive implication of the equation above is that—in the presence of coding

noise—unexpected delays falling far from the mean of the prior will be shrunk towards the

prior mean more heavily than expected delays. Following (7), we can write the expectation
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of the response distribution as follows:

E[ θ | τℓ, τs ] = ln(η) + β [ ln(ℓ− s)− ln(η) ]

= ln(ℓ− s) + (1− β) [ ln(η)− ln(ℓ− s) ] .
(8)

The first line of the equation conveys the point that we can think of the prior mean

as predicting the following time delay, so that deviations from that prediction give rise

to prediction errors. Such prediction errors are, in turn, used to amend the prior in

proportion to the average signal-to-noise ratio in the mental representations. The second

line emphasizes how regression to the mean of the prior will produce systematic deviations

in inferences from the true time delay being presented to the decision-maker. To see this,

define the bias as the difference between the average inference and the true time delay,

E[ θ | τℓ, τs ]−ln(ℓ−s) = (1−β)[ ln(η)−ln(ℓ−s) ]. The average inferred time delay will thus

be made up of the true time delay plus bias. The strength of the bias will be a function

of coding noise, converging to an unbiased estimate only as coding noise tends to 0, given

that limνt→0(β) = 1. It will further be a function of the distance to the prior mean,

capturing how unexpected an observed delay is from the perspective of the prior.

Notwithstanding this systematic bias, basing the decision on the posterior mean instead

of the maximum likelihood estimate rt is optimal in the sense of minimizing the mean

squared error across all choices. To see this, we can use the bias-variance decomposition

of the mean squared error:

E
[(

θ̂ − ln(d)
)2 ]

=

(
ξt

ξt + λt
[ln(η)− ln(d)]

)2

+
λt

(λt + ξt)2
, (9)

where d ≜ ℓ−s, θ̂ ≜ E[ θ | d ] is the expectation of the response distribution in (7), the first

part on the right-hand side is the squared bias, (1− β)2[ ln(η)− ln(d) ]2, and the second

part is the variance of the response distribution from (7). The variance of the response

distribution entering the definition of the mean squared error is smaller than the variance

of the signal rt.11 Most deviations ln(η) − ln(d) will be small due to the nature of the

normal distribution. This means that the sum of the squared bias and the variance of the

response distribution will stay below the variance of the maximum likelihood estimator in
11This obtains simply from λt

(λt+ξt)2
< λ−1

t , which will be the case for any ξt > 0, i.e. for any proper
prior variance that is strictly smaller than infinity, σ2 < ∞ (given that for σ2 = ∞ we revert to the
maximum likelihood estimator).
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(4) when aggregating across many stimuli (see Ma et al., 2023, section 4.5, for a detailed

discussion). It is in this sense that the biased Bayesian estimator is optimal.12

2.2 Noisy coding of rewards

Just like delays, rewards are not directly accessible to the mind and thus need to be

represented by neural signals. Here, I assume that such signals directly code log reward-

ratios. Let w ≜ ln (x/y). Assuming that the log of the reward ratio is encoded in a way

similar to time delays, we obtain the following likelihood:

rr ∼ N ( ln(w) , ν2r ). (10)

The accuracy of the signal for the reward ratio will be given by the precision λr ≜ ν−2
r . I

assume the following prior distribution for ln(w):

ln(w) ∼ N ( ln(ρ) , σ2
r ), (11)

where the prior mean, ln(ρ) is the expected log reward ratio. Intuitively, it thus cap-

tures captures expectations of how much better future rewards are compared to present

rewards.

Defining γ ≜ λr
λr+ξr

, we obtain the posterior expectation E[ ln(w) | rr ] = γ rr+(1−γ) ln(ρ),

and thence the following response distribution:

p ( ln(w) | y, x ) = N
(
γ ln

(
ln

(
x

y

))
+ (1− γ) ln(ρ) , γ2 ν2r

)
. (12)

The discussion concerning optimality of this process follows the same lines as above for

time delays, and is thus not repeated here. A formal proof is omitted inasmuch as it is

identical to the proof for the time delays included above.13

12This result holds in particular because the quantity of data on which the inference is based will
necessarily be small, given that choice quantities have to be assessed quickly. For a general discussion of
the optimality of Bayesian estimators in such contexts form a machine learning perspective, see Bishop
(2006), chapter 3.

13Gabaix and Laibson (2022) propose a model that is formally related to the setup presented here. They
assume Bayesian agents who are perfectly patient, but who perceive future utilities with some noise, so
that sτ ∼ N (u(xτ ) , ω

2
τ ), where u(xτ ) is the utility of a reward x received at time τ , and sτ is the noisy

simulation of that utility. This simulation is combined with a prior u(xτ ) ∼ N (x̂, ζ2). This yields the
posterior expectation E[u(xτ ) | sτ ] = x̂+D(τ)(sτ − x̂). Assuming that the noisiness of the signal increases
linearly in the delay from the present τ , i.e. ω2

τ = ω2 × τ , they obtain D(τ) ≜ ζ2

ζ2+ω2τ
= 1

1+(ω2/ζ2)τ
,

which takes the form of the proportional discount function proposed by Mazur (1987), D(τ) = 1
1+χτ

, with
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2.3 The stochastic choice rule

We can now use the response distributions in (7) and (12) to arrive at the following choice

probability of the larger-later option (see Online Appendix C):

Pr[(x, τℓ) ≻ (y, τs)] = Φ

γ ln
[
ln
(
x
y

) ]
− β ln [α (ℓ− s) ]√

β2 ν2t + γ2 ν2r

 , (13)

where Pr[(x, τℓ) ≻ (y, τs)] is the probability of the larger-later reward being chosen, and

Φ represents the standard normal cumulative distribution function. The probability of

choosing the larger-later option thus increases in the reward ratio x/y and decreases in the

time delay τℓ− τs as one would expect. The probability of choosing the larger-later option

also decreases in α ≜ η
1−β
β ρ

γ−1
β , which thus captures impatience. Impatience is thus a

positive function of the length of the expected time delay, η, and an inverse function of

expectation about the later relative to the sooner reward. The function has a fixed point

at α−1: delays shorter than α−1 will be over-estimated, whereas delays longer than α−1

will be under -estimated.

Choice is inherently stochastic. In contrast to traditional discounting models, which

combine a deterministic preference model with an independently chosen stochastic choice

model (He et al., 2019b), the probabilistic setup used here produces an inherently stochas-

tic model of inter-temporal choice. The response noise,
√

β2 ν2t + γ2 ν2r , corresponds to

the sum of the standard deviations of the response distributions in (7) and (12). This

gives us a new sense of the optimality of the Bayesian combination of signal and prior.

Whereas variation of the signals rt and rr increase unboundedly in coding noise νt and

νr, response noise
√
β2 ν2t + γ2 ν2r is non-monotonic in coding noise, since β2 ν2t and γ2 ν2r

increase up to νt = σt and νr = σr, and decrease again thereafter. Intuitively, as long as

the signal-to-noise ratio in rt and rr is favourable, the mind predominantly relies on this

signal in its inference process, with stochasticity increasing in the noise of the signal. Once

the signal-to-noise ratio becomes unfavourable, however, the mind increasingly relies on

the prior. This means that as coding noise increases further, stochasticity in behaviour

actually declines. Response noise is thus non-monotonic in coding noise.

This addresses issues arising from scale arbitrariness in random utility models, which arise

χ ≜ ω2

ζ2
. The model thus predicts discounting to be proportional to the time delay from the present, but

cannot organize subadditivity or other deviations from proportional discounting as modelled here.
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when both numerator and denominator are defined independently on arbitrary scales as

documented by Apesteguia and Ballester (2018). The latter show that the level of risk

aversion and impatience predicted by a random utility model is non-monotonic in utility

curvature. Utility parameters estimated from such a model will thus be systematically

biased—a problem that is difficult to solve for behavioural generalizations of discounted

expected utility. The model I present here solves this issue due to the tight interlinkage

of the numerator and denominator in (13). The non-monotonicity of the response noise

in the denominator thereby restores monotonicity in predicted choices.

2.4 Meaning of parameters

The model I present is generative in nature, rather than descriptive like typical models in

behavioural economics. This means that the parameters have causal meaning in terms of

the mental inference processes they are meant to govern. Their meaning for characterizing

behaviour thus arises from the observation that they make causal predictions on how

behaviour ought to change with the accessibility of the choice attributes or the probability

distributions of choice primitives expected by the decision-maker. The parameters thus

have intrinsic neural meaning, and can generally be identified based on neuro-physiological

data (see e.g. Barretto-García et al., 2023 and de Hollander et al., 2024 for work identifying

coding noise signatures in the brain for decisions under risk).14

The expression in (13) is a Probit link function, and can thus in principle be directly

estimated by mapping it into binary choices by means of a Bernoulli distribution. Separate

identification of the parameters γ and β, however, will require additional restrictions on

model parameters.15 Most comparative statics, however, will be driven by the ratio β/γ and

by α. These two quantities are straightforward to identify based on structural estimations

or in reduced form models, yielding the signal-to-noise ratio of time delays relative to

rewards. Separate identification of β and γ require additional assumptions on the noise

structure (see Vieider, 2024b, for a discussion for the parallel case under risk). As it turns
14Here as throughout, I make no distinction between the ‘brain’ and the ‘mind’. In this sense, perception

cannot be disentangled from physical processes happening in the brain, and should instead be seen as their
direct consequence. See Damasio (2006) for a book-length treatment of the distinction between brain and
mind, and why it is largely meaningless. I am grateful to Peter Wakker for pointing out the usefulness of
making this aspect of the model explicit.

15Identifying the parameters separately will require an assumption of equal coding noise for rewards
and time delays, i.e. ν = νt = νr (see Vieider, 2024b for a discussion of the equivalent identification
restrictions under risk). This comes at the cost of interpretability of some of the original parameters of
the model.
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out, β/γ and by α allow to fully characterize the behavioural predictions of the model, to

which I turn next.

2.5 Behavioural implications

To discuss the behavioural implications of the model, it will be convenient to rewrite (13)

in the following, mathematically equivalent way:

Pr[(x, τℓ) ≻ (y, τs)] = Φ

(
ln
(
−ln

( y
x

))
− γ−1 β ln (α (ℓ− s))√

ν2r + γ−2β2 ν2t

)
, (14)

where the inverse reward ratio y/x takes the form of a nonparametric discount factor.

A key implication of the model is subadditive discounting (Read, 2001) and the as-soon-

as-possible effect (Kable and Glimcher, 2010), i.e. measured impatience systematically

depends on the time delays used to measure it. Although often ignored by economic mod-

els, such subadditivity is pervasive in empirical data (Dohmen et al., 2017). Equation (14)

predicts that the degree of subadditivity will depend on the ratio β/γ. In particular, for

β < γ short delays ℓ− s < α−1 will be over-estimated, while long delays ℓ− s > α−1 will

increasingly be under-estimated. Subadditivity is thereby a consequence of time delays

being encoded more noisily than rewards, but it will turn to superadditivity (Scholten and

Read, 2006) if the signal-to-noise ratio is more favourable for delays than for rewards, i.e.

if β > γ. This is not a just-so ex post explanation: the model makes precise causal predic-

tions on how changing the informational content of a signal affects observed choices.

For a given delay length, however, the function is stationary, i.e. it is independent of the

value taken by the up-front delay τs except in the special case where τs = 0.16 Apparent

hyperbolicity in delays of increasing length from the present such as documented e.g. by

Thaler (1981) is thus purely a consequence of subadditivity.17 To see this, let us start by
16That is, the model does not predict strongly decreasing patience as defined by Prelec (2004), i.e.

systematic decreases in discounting when a delay of given length is pushed farther into the future from
an initial up-front delay.

17While hyperbolicity is much-discussed in the economics literature, its empirical status is unclear. Most
of the historical discussion of decreasing impatience has used delays of increasing lengths from the present
(e.g., Thaler, 1981; Ebert and Prelec, 2007). Read (2001) found no evidence for strongly decreasing
impatience across 3 experiments. Rohde (2019) found evidence for present-bias, but not for further
decreases in impatience with larger up-front delays. He et al. (2019b) concluded from two experiments
that “decreasing impatience is not as robust as is widely held” (p. 63). Similar conclusions were reached by
a number of other recent papers carefully controlling for delay-dependence (Attema et al., 2010; Cavagnaro
et al., 2016). See, however, Bleichrodt et al. (2016) for evidence of strongly decreasing impatience for both
health and money. There may also exist systematic differences between findings obtained from binary
choices versus choice lists to elicit present or future equivalents.
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examining delays from the present, where τs = 0 and hence s = 0. In this special case,

(13) provids cognitive microfoundations for the constant sensitivity discount function of

Ebert and Prelec (2007). This is most easily seen by zooming in on the stochastic equality

condition in the numerator.18 Let δℓ ≜ y
x . Exponentiating the numerator twice then yields

the following expression at the point of stochastic indifference:

δℓ = exp
(
−(αℓ)

β/γ
)
. (15)

This equation shows the similarity with the constant sensitivity function of Ebert and

Prelec (2007). For upfront delays τs > 0, however, the noisy coding model predicts that

delays between the two options are nonlinearly distorted (i.e. exp
(
−[α(ℓ− s)]β/γ

)
). The

constant sensitivity model, on the other hand, predicts transformations of the individual

time delays from the present, so that δτs,τℓ = exp(−α̂β̂(τ β̂ℓ − τ β̂s )), where β̂ is the time-

sensitivity parameter. Much like other functions from the hyperbolic family, the constant

sensitivity model can thus not account for subadditive discounting (Read, 2001). Let me

repeat once more, however, that the main edge of the model derives from the causality of

its predictions: for instance, the ‘dividing line between the near and far future’ α̂−1 (which

here is a dividing line between short and long delays, given by α), is predicted by the model

to be endogenously determined by the prior expectations of the decision-maker.

Finally, the model differs from the constant sensitivity function in yet another way, since

it produces present bias as a separate motive due to the insertion of an additive 1 into the

time delay. When s = 0, ℓ ≜ 1 + τℓ implies that the function will show a discontinuous

drop in the vicinity of τℓ = 0. That is, limτℓ→0D(ℓ) = exp(−αβ/γ), where D(ℓ) indicates

the discount function. Assuming as usual that D(0) = 1—where no delay is indicated,

no delay needs to be encoded—present bias will be given by 1− exp(−(α)β/γ).19 Present

bias thus results purely from the solution to a numerical overflow problem in mental

representations. It is, however, predicted to be strictly linked to the key parameters in

the model: present bias increases in impatience α, and depends on β/γ. In particular, the

smaller time sensitivity β/γ, the larger the present bias will be, since β/γ < 1 will uplift
18I define ‘stochastic equality’ as the larger-later reward being chosen 50% of the time across many

repeated choices.
19In practical applications, one ought to think of the additive 1 as being applied on a subjective time

scale. This could be modelled by dividing the objective time difference by a constant, τℓ−τs
κ

, which would
serve to make α and the additive 1 independent of the time units used to express delays (i.e. days vs weeks
vs months vs years). The constant κ is thereby best thought of as a collective normalization constant,
rather than an individual parameter, which serves to avoid an inflation in the degrees of freedom.
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values of α < 1 towards 1. Impatience and present bias are thus strongly intertwined in

the model, and both are co-determined by time-sensitivity β/γ.

The model can also account for the absolute magnitude effect—the effect whereby impa-

tience decreases as the magnitude of the rewards increases (Thaler, 1981)—but requires

an additional feature to do this. In particular, the magnitude effect will obtain if reward

coding noise νr increases in the (numerical, nominal) stakes, so that γ decreases. Such

increases in coding noise are plausible if the stakes used fall outside of the range of habit-

ual amounts experienced on a daily basis (Netzer, 2009; Polania et al., 2019). Garagnani

and Vieider (2025) test such accounts of numerical habituation in the context of choices

under risk, and find that subjects in the UK indeed make more mistakes if identical value

is expressed in larger numerical units. Subjects in Japan, who are habituated to larger nu-

merical units due to the currency units they use in everyday life (180 Yen ≈ 1 GBP), make

more mistakes when identical stakes are expressed using small numerical units.

Such increased reward-coding noise is predicted to have two concomitant effects. One,

by increasing β/γ it is predicted to result in a decrease in subadditivity. Two, for values

of α < 1—implying discounting per period of less than 100%—it is predicted to reduce

impatience. That, in turn, implies an increase in choices for the larger-later option, as

well as a reduction in present bias. Importantly, the effect is predicted to be linked to the

numerical magnitudes used to represent the rewards, rather than to any inherent economic

value, which makes for an interesting empirical hypothesis.20

3 Discussion and Conclusion

I have presented a generative account of delay-discounting. Other than descriptive models,

which aim to mathematically capture observed behaviour as accurately as possible, such a

model aims to represent the underlying processes from which observed choice patterns may

arise. Modelling this decision process in a way that is plausible from a neuro-biological

point of view, and using a choice rule and modelling setup identical to those used to

model decision processes under risk, uncertainty, and ambiguity, I have shown the model to
20Gershman and Bhui (2020) present a model based on Gabaix and Laibson (2022) which explains

the absolute magnitude effect as a reduction in the simulation noise of future utilities when the outcome
magnitues are large enough to make this worthwhile. Using increases in numerical magnitudes detached
from economic value seems a promising way of disentangling these opposite explanations, given that in
their model the reduction in noise unambiguously arises from the increase in economic magnitudes in a
“rational inattention” optic.
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reconcile several findings that remain challenging for any one descriptive model to organize.

More importantly, the model makes causal predictions on how behaviour should change if

one were to manipulate the underlying parameters, either behaviourally or neurally.

The model predictions described above are consistent with a number of stylized facts in

the delay-discounting literature. For instance, Ebert and Prelec (2007) and Zauberman

et al. (2009) have documented how the time dimension is ‘fragile’, subjective, and sub-

ject to manipulations. The logarithmic transformations of time delays incorporated in

the model present commonalities with behavioural models incorporating logarithmic time

perception. In two notes, Takahashi (2005) hypothesizes that a logarithmic perception of

time could underly apparently hyperbolic discounting, and Takahashi (2006) shows that

a concave power transformation of time can account for subadditivity. Hyperbolicity and

subadditivity thereby emerge based on different patterns of subjective time perception,

and are enshrined in two formally different models. Zauberman et al. (2009) and Kim

and Zauberman (2009) document how “hyperbolic discounting” can emerge from logarith-

mic perception of time, and empirically show that average subjective time ratings bear a

logarithmic relationship to objective time delays from the present. Cooper et al. (2013)

provide evidence that neural activations during subjective time rating tasks are predictive

of subsequent discounting behaviour.

These studies thus provide valuable insights supporting a central aspect of the account

I propose here. The papers nevertheless remain behavioural in nature, in the sense that

given their perceptual assumptions, the parameters that govern behaviour are added as

exogenous variables. To reiterate one last time, the strength of the current model consists

in making directional causal predictions on how behaviour ought to change when different

choice attributes are made more or less accessible (i.e. by manipulating the cognitive

frictions that constitute the ‘constraint’), and when decision-makers are made to expect

different types of stimuli. A further key element is that the model creates a direct link be-

tween neurophysiologically measurable brain activations and observable choice behaviour,

with a key role taken up by the dispersion or noise in such measurements. Importantly,

this happens without the need to pass via intermediate concepts such as ‘subjective per-

ception’.

The noisy coding of time model I have presented makes stochastic predictions on choice

behaviour in tradeoffs between smaller-sooner and larger-later amounts based on the noisy

17



perception of time delays. A related literature has studied the effects of randomness in

choices and/or preferences on inter-temporal discounting (Lu and Saito, 2018; He et al.,

2019b). These papers have highlighted that particular patterns of randomness in responses

or preferences may result in hyperbolic as-if discounting. The predictions emerging from

these two classes of models are quite distinct. While the noisy coding model predicts

subadditivity and present-bias based on different mechanisms, these error models predict

that decreasing impatience (hyperbolicity) may arise from errors or from randomness in

preferences. The predictions of these models are thus similar to those of the hyperbolic

discounting literature, even though the patterns arise from noise rather than stable pref-

erences.

Note also that the absence of a prediction of truly hyperbolic behaviour in the model I

presented does not necessarily imply that such behaviour does not exist (even though its

existence is empirically contended). For instance, Gabaix and Laibson (2022) present a

formally similar approach based on Bayesian statistics, which predicts hyperbolic (pro-

portional) discounting to emerge from difficulties in simulating future utilities. Halevy

(2008) and Chakraborty et al. (2020) predict decreasing impatience to emerge from the

inherent uncertainty of the future. Such accounts are highly complementary to the predic-

tions emerging from the model presented here, and different mechanisms may well jointly

contribute to determining choice behaviour.

Some of the specific mechanisms underlying the model I presented may well prove con-

tentious. It is, however, important to note that many of the central predictions of the

model do not hinge on a literal interpretation of the modelling assumptions. For instance,

we would not expect the mind to encode the parameters of the normal distributions and

to calculate the precise posteriors. The exact neural underpinnings of Bayesian repre-

sentations remain disputed at this point (Ma and Jazayeri, 2014). While the statistics

of the environment could be encoded by populations of neurons (Ma et al., 2006), they

may alternatively be represented by a limited number of samples that are updated with

new samples over time (Sanborn and Chater, 2016; Prat-Carrabin et al., 2021). Although

the precision with which a Bayesian mechanism is implemented will differ between these

coding paradigms, the key point is that (approximate) calculations such as the ones used

here are well within the reach of the human mind. This makes the model plausible from

a neuro-biological point of view.
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ONLINE APPENDIX

A Choice rule on orignal scale

I have assumed that the choice rule is transformed from its original scale by taking the

log twice. This does in no way affect the conclusions. If we work on the original scale,

the optimal choice rule is exp(−t) > y
x . We now derive the posterior expectation of the

mental time delay d ≜ ℓ − s on the logarithmic scale just like above. To obtain the

posterior expectation of the time delay d itself, we exploit the properties of the log-normal

distribution, which has a mean µ + 1
2σ

2
p, where σ2

p ≜ ν2σ2

ν2+σ2 is the posterior variance

(subscripts dropped for notational conveninence). We thus obtain

E[ d | r ] = exp

(
βr + (1− β)µ+

1

2
σ2
p

)
= exp

(
βr + (1− β)(µ+

1

2
σ2)

)
.

Substituting this mental quantity for t into a choice rule exp(−E[d | r]) > y
x and rearrang-

ing, we get exp (−exp(βr + (1− β)µ̂)) > y
x , where µ̂ ≜ µ + 1

2σ
2. Taking the logarithm

of both sides, multiplying by −1, and taking the logarithm again, yields βr + (1− β)µ̂ <

ln
(
−ln( yx)

)
. The left-hand side of this equation can be used to derive a response distri-

bution as in (7). The subsequent derivation follows the steps in the main text. The only

difference from the choice rule presented in the main text is now in the definition of the

impatience parameter, which takes the form α̃ ≜ exp
(
(1−β)

β µ̂
)
.

B Generalization to other types of time tradeoffs

In the main text, I have discussed simple tradeoffs between a smaller-sooner and larger-

later option. Here I show that the model can be generalized to some more complex tradeoffs

in a straightforward way. Note, however, that generalizing the model further would require

a departure from the closed form solutions used in this present paper. Such a generalization

may also be questionable, since highly complex tradeoffs with many outcomes and time

delays are likely to trigger different cognitive processes from those modelled here.

Take for instance choice options having payouts at different time horizons, such as the ones

used by Abdellaoui et al. (2013) to disentangle discounting from inter-temporal utility. A

sooner reward y, τs is then traded off against a stream of rewards (x, τℓ; z, τs), where

x > y > z. This can be accommodated by replacing the choice rule in (2) with the
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following expression:

ln

(
p

q

)
> ln

(
y − z

x

)
,

with all other quantities defined as in the main text. Any additional payments occurring

with the same two delays can be handled similarly.

C Derivations and proofs

Combination of signal and prior in (6). The likelihood and prior take the following

form:

p(r | t) ∝ exp

(
− 1

2ν2
(r − ln(t))2

)
p(ln(t)) ∝ exp

(
− 1

2σ2
(ln(t)− µ)2

)

We can log the distributions to transform the multiplication into an addition:

ln (p[ln(t)|r]) = ln[p(r|t)] + ln[p(ln(t))]

= − 1

2ν2
(
r2 − 2 r ln(t) + [ln(t)]2

)
− 1

2ν2
(
[ln(t)]2 − 2µ ln(t) + µ2

)
= −1

2

(
1

ν2
+

1

σ2

)
[ln(t)]2 + ln(t)

( r

ν2
+

µ

σ2

)
−
(

r2

2ν2
+

µ2

2σ2

)

We know that the log-posterior distribution will take the following form:

ln (p[ln(t)|r]) = −
(
[ln(t)]2

2σ2
p

− 2 ln(t) θ

2σ2
p

+
θ2

2σ2
p

)
,

where θ ≜ E[ln(t)|r] is the posterior mean, and σ2
p is the posterior variance. We can thus

complete the square by matching the first two expressions in the sums of the last two

equations above. We start from the first:

− [ln(t)]2

2σ2
p

= −1

2

(
1

ν2
+

1

σ2

)
[ln(t)]2

σ2
p = (λt + ξt)

−1,

which is the variance of the posterior in (6), and where λt ≜ ν−2 and ξt ≜ σ−2.
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We can now match the second element:

2 ln(t) θ

2σ2
p

= ln(t)
( r

ν2
+

µ

σ2

)
θ =

λt r + ξt µ

λt + ξt
=

λt

λt + ξt
r +

ξt
λt + ξt

µ,

which is the posterior mean from (6). QED.

Joint distribution of time and reward signals. The proof for the combination of

the two response functions in 13 is straightforward. The derivations in the main text

distribute the signals rt and rr independently. The joint distribution simply exploits the

assumption of independence in the signals, which I maintain throughout (see Natenzon,

2019, on modelling correlated signals). The difference in signal will then again follow a

normal distribution with as its mean the difference of the two means of the signals, and

its variance given by the sum of the two variances of the signals.
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