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Abstract

Standard models of decision-making are deterministic. Inconsistencies
in choices are accommodated by separate error models. The combination of
decision model and error model, however, is arbitrary. Here, I derive a model
of decision-making under uncertainty in which choice options are mentally
encoded by noisy signals, which are optimally decoded by combination with
pre-existing information. The model predicts a four-fold pattern of risk atti-
tudes as documented in prospect theory. The model is, however, inherently
stochastic, so that choices and noise are determined by the same underlying
parameters. This results in several novel predictions, which I test in a series
of experiments.
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1 Motivation

Take a wager paying a prize x if event e occurs, and y < x under the complemen-

tary event ẽ. Assume that a decision maker has to choose between this wager and
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a sure amount of money, c, where x > c > y. Traditionally, decision makers have

been assumed to have deterministic utilities over outcomes, as well as being able

to form subjective beliefs over the occurrence of event e (Savage, 1954). Choices

of this type could then be used to recover the underlying belief and preference

parameters of the decision maker. Empirical observations, however, have pointed

to choices that are often inconsistent, even when the same choice options are re-

peated within relatively short time delays (Mosteller and Nogee, 1951; Tversky,

1969; Agranov and Ortoleva, 2017).

The dominant response to such challenges in work aimed at identifying prefer-

ences from choice data has been to append an additive error term to the determin-

istic choice model (Thurstone, 1927; Hey and Orme, 1994; Bruhin, Fehr-Duda and

Epper, 2010). The combination of error model and deterministic choice model,

however, is arbitrary, and provides many degrees of freedom to the econometric

modeller. Buschena and Zilberman (2000) showed that inferences about the best-

fitting choice model depend on the chosen error structure; and, vice versa, that

conclusions about the most suitable error structure depend on the choice model

adopted—a phenomenon that they describe as a ‘path dependency problem for

model selection’ (p. 69). Conclusions reached based on any given combination of

decision model and stochastic choice structure could thus be driven by arbitrary

assumptions about the error structure (Alós-Ferrer, Fehr and Netzer, 2021).

I propose a model in which decision makers receive imperfect, noisy signals

about the choice quantities. They then combine these noisy signals with men-

tal priors describing the likelihood of different values in the environment to make

inferences about the true choice options triggering the signals. The model is inher-

ently stochastic, so that the decision model and stochastic choice model emerge

organically from one and the same setup. The model predicts a four-fold pat-

tern of risk attitudes much as documented in prospect theory (PT ; Kahneman

and Tversky, 1979; Tversky and Kahneman, 1992; Wakker, 2010), thus establish-

ing micro-foundations for observed choice behaviour. At the same time, however,

the model departs markedly from PT in other respects. In particular, the same

parameters determine discriminability between choice options and decision noise.

The model thus predicts that the ‘white noise’ assumption underlying typical PT
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implementations is not warranted. This is problematic inasmuch systematic cor-

relations between arbitrary error structures and deterministic decision parameters

may bias the inferences about preferences drawn from such models.1

A particularly stark challenge to standard models of decision making under

risk arises from so-called simplicity equivalents. Oprea (2022) presents an ex-

periment comparing a traditional PT setup measuring probability distortions by

means of certainty equivalents to what he calls ‘deterministic mirrors’ of the same

lotteries. Such mirrors consist of choice options that keep the complexity of the

lottery representation, while entirely removing the underlying risk.2 The choice

problem is thus complex but deterministic, so that choices for the sure amount

must represent a preference for simplicity, rather than reflecting attitudes towards

risk. Remarkably, Oprea (2022) documents results for simplicity equivalents that

closely track the results obtained under risk using certainty equivalents, including

‘likelihood-insensitivity’ in a context where likelihoods play no role.

The striking implication of these results is that the patterns we have observed

in experiments investigating decision making under risk and uncertainty may not

be about risk and uncertainty at all. This constitutes a fundamental challenge

to models of decision making under risk and uncertainty, since the latter aim to

describe underlying preferences about risk. The model I present here, on the other

hand, is driven by approximate assessments of numerical quantities. Although I

derive the model in the context of choices between uncertain options, one could

equally well substitute deterministic mirrors for the uncertain events or likelihoods.

The model treats choice stimuli as inherently uncertain, so that inferences need

to be drawn about the true underlying choice options. This, in turn, implies that

uncertainty about the choice options is a matter of degree. In other words, while

models of decision making typically distinguish categorically between risk and

ambiguity (Wakker, 2010; Abdellaoui, Baillon, Placido and Wakker, 2011), the
1Some recent papers have discussed errors in inferences on preference parameters resulting

from the noise structure (Wilcox, 2011; Apesteguia and Ballester, 2018). While related to that
line of research, the insights presented here rely on a model making precise predictions on the
form of correlations we ought to observe in standard ‘PT plus additive noise’ setups.

2In practice, he uses 100 boxes containing different monetary amounts, with 0 < w < 100
boxes containing a prize, and 100−w containing nothing. To obtain CEs, he follows the standard
procedure of paying one randomly extracted choice. Deterministic mirrors keep the same setup,
but pay out the rewards for all the 100 boxes, scaled by 100 to keep the expected payoff constant.
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Bayesian inference model I present places the two on a continuum of uncertainty

about choice stimuli. The driving force underlying noisy inferences is given by the

complexity of the choice environment, rather than by risk itself.

I present a number of empirical tests to assess the model predictions. The first

type of tests aims at assessing novel predictions about patterns we should observe

when estimating PT preference functionals on data that were truly generated by

the Bayesian Inference Model (BIM ) presented here. The first prediction concerns

systematic correlations between the decision parameters and noise. Perhaps sur-

prisingly, such correlations have not been systematically examined to date. Notice

that correlations between noise and decision parameters violate the ‘PT plus white

noise’ assumption, and may affect the very inferences about preference parame-

ters that are the main interest of such empirical estimations. As showcased by

Buschena and Zilberman (2000), this may not only affect preference parameters in

quantitative terms, but can hit at the very heart of the debate on the descriptive

validity of different decision models. Alós-Ferrer and Garagnani (2022) indeed

showed that imposing a symmetric noise structure on data can produce inferences

seemingly supporting a given decision model even if the underlying data have been

generated based purely on a random choice algorithm.

The second test concerns PT’s strict precept of probability-outcome separa-

bility. Violations of this precept under risk are well known, and take the form

of probability weighting being affected by stake size (Hogarth and Einhorn, 1990;

Fehr-Duda, Bruhin, Epper and Schubert, 2010; Bouchouicha and Vieider, 2017).

The model I present further predicts a novel violation of probability-outcome sep-

arability under ambiguity. Knowledge about probabilities is thereby predicted to

affect utility curvature, so that ambiguity will be reflected in utility curvature as

well as in probability weighting. The driving force is once again complexity, since

ambiguous probabilities are arguably more difficult to assess than known proba-

bilities. To the best of my knowledge, this prediction remains untested. Here, I

test this prediction using an original dataset that is rich enough to allow for the

separate estimation of all the relevant quantities under both risk and ambiguity.

Finally, I present a direct test pitching PT against the BIM on binary choice

data. While striking, the results presented by Oprea (2022) were obtained en-
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tirely based on a choice list design. If some subjects simply adopt a heuristic of

switching towards the middle of any given list, this could yield inferences that

mechanically resemble likelihood-distortions (Vieider, 2018). I thus compare bi-

nary choices for risk to binary choices for mirrors of the same tasks. The BIM

makes no fundamental distinction between these two settings. PT, on the other

hand, models the first setting as being driven by attitudes towards risk, whereas

the second setting reduces to a comparison of sure outcomes (possibly augmented

by some decision noise, which should however not exceed the noise observed in

risky decisions). I find behaviour for mirrors to closely correspond to behaviour

for risky lotteries. Predictive tests show that PT is indeed not able to handle such

evidence well, whereas the BIM produces comparable parameter estimates in the

two settings. Data on decision times further back the conclusion that decisions

for risk and mirrors are driven by the same underlying factors.

The approach taken here builds on an influential theoretical paradigm in neu-

roscience, according to which the brain uses probabilistic mechanisms to encode

perceptual information about the outside world, and decodes this information

by Bayesian updating with a mental prior (Knill and Pouget, 2004; Doya, Ishii,

Pouget and Rao, 2007; Vilares and Kording, 2011). Such an approach will be op-

timal whenever decision settings are complex, and thus taxing for the constrained

mental resources allocated to a problem. This serves to add computational real-

ism to economic choices, which is often lacking in traditional models (Bossaerts,

Yadav and Murawski, 2019).

The noisy neural coding of choice stimuli will naturally result in discrimination

difficulties for values that are observed relatively infrequently, an intuition that

is shared with a variety of other models (Robson, 2001; Netzer, 2009; Woodford,

2012; Steiner and Stewart, 2016; Netzer, Robson, Steiner and Kocourek, 2021).

Such discrimination difficulties for relatively infrequent stimuli, in turn, will result

in systematic biases in those regions. Discounting noisy signals indicating choice

stimuli that are considered unlikely a priori will thus result in some form of re-

gression to the mean that can explain a number of behavioural regularities (Zhang

and Maloney, 2012). The degree of this phenomenon will, in turn, be governed

by the relative confidence subjects have in the evidence, a phenomenon that has
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been documented empirically under the label of cognitive undertainty (Enke and

Graeber, 2019, 2021).

The model is closely related to some recent contributions in economics. No-

tably, Khaw, Li and Woodford (2021) used a similar noisy numerical perception

setup to explain small stake risk aversion (Rabin, 2000). My model differs from

theirs in several respects. While they assume probabilities to be objectively per-

ceived, I allow for the noisy perception of both probabilities and outcomes. This

makes the model applicable to uncertainty as well as risk, and even to determin-

istic mirrors of risky choice setups (Oprea, 2022). It further makes it possible

to account for insurance takeup and lottery play. Perhaps the most important

difference resides in the role played by priors. Whereas the priors drop out from

the model presented by Khaw et al. (2021), reducing observed behaviour to pure

perception noise, they play a central role in the model I present.

The BIM is thus an inherently adaptive model of choice, predicting that de-

cisions can quickly and efficiently adapt to the statistics of the environment to

make the best possible use of constrained mental resources. Based on evidence

from neuroscience, such a model should have two characteristics. One, priors

should dynamically adapt to the choice environment. And two, priors should be

hierarchical, so that salient events in one context may affect behaviour in other,

related contexts. While a fully-fledged dynamic model of learning is beyond the

scope of the present paper, the model allows a glimpse of how these elements could

account for puzzling behaviour such as anti-cyclical risk attitudes (Cohn, Engel-

mann, Fehr and Maréchal, 2015), risk preferences depending on environmental

circumstances (Di Falco and Vieider, 2022), and calibration issues when applying

parameters measured in the lab to an insurance context (Sydnor, 2010).

The BIM is related to a number of recent models of choice behaviour. Gabaix

and Laibson (2017) show that hyperbolic discounting can emerge from the noisy

perception of future utilities by otherwise perfectly patient Bayesian decision mak-

ers. In a twin paper (Vieider, 2021), I discuss a model applying an identical

numerical perception setup to time delays. Frydman and Jin (2022) inject an

efficient coding setup into the model of Khaw et al. (2021), allowing them to

endogenize coding noise as a function of environmental variability in outcomes.
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They present evidence for this mechanism based on an experiment exogenously

manipulating the variance of choice stimuli, while keeping their mean constant.

They also document a correlation between risk aversion and noisiness in a numer-

ical discrimination task, providing direct evidence for the central mechanism of

noisy number perception. Natenzon (2019) uses a related Bayesian noisy percep-

tion setup to explain the attraction and compromise effects. Choices of seemingly

dominated options are thus justified based on the optimal combination of noisy

signals with prior information.

The results I present are further related to a large literature showcasing the

instability of revealed preferences. Revealed preferences ought to be unstable to

the extent that individual choices are based on noisy signals, and to the extent

that priors change across time. Such instability has been documented extensively

for inter-temporal correlations of risk attitudes—see Chuang and Schechter (2015)

for a review and discussion. The same sort of instability has also been documented

specifically for prospect theory parameters (Zeisberger, Vrecko and Langer, 2012).

The insights I present have potentially far-reaching policy implications. For

one, the model suggests that revealed choice behaviour is not indicative of ac-

tual risk preferences, making it optimal for a welfare-maximizing policy maker to

ignore such patterns. It should furthermore become possible to steer behaviour

by simplifying the decision environment, providing training on how to efficiently

handle complex decision situations, or by providing advice to overcome such com-

plexities. Indeed, if what we think of as preferences is driven to a large extent by

the noisy processing of complex decision situations and by changeable priors, then

such decisions should be eminently malleable and subject to policy intervention.

This paper proceeds as follows. Section 2 derives the model, with section 2.3

building a ‘mapping’ between the BIM and PT. Section 3 presents the empirical

tests. Section 4 presents a short discussion and concludes the paper.

2 The Bayesian Inference Model

In this section, I present the model in several steps. I start by showing that

coding uncertainty as log-likelihood ratios of complementary events constitutes a
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highly efficient form of representing and updating probabilistic information, thus

resulting in an optimal choice rule under uncertainty. I then show how the noisy

mental encoding of choices between wagers yields subjective distortions of the

objective quantities in the optimal choice rule. Finally, I use the noisy coding

model to derive predictions on decision patterns under risk and ambiguity.

2.1 Noisy coding of uncertainty as log-likelihood ratios

I start by showcasing the efficiency of coding probabilistic information in terms of

likelihood ratios. Assume a decision maker (DM ) needs to take a decision based

on her assessment of the likelihood of an uncertain event e.3 Assume that the

DM does not know the true likelihood of e occurring, but observes a noisy signal,

s, about this likelihood. Assume further that the DM knows the probability of

the signal conditional on the event, P [s|e], as well as the probability of the signal

conditional on the complementary event ẽ, P [s|ẽ]. The DM can then use the

following equation to infer the likelihood of the event, conditional on the signal:

P [e|s]
P [ẽ|s]

=
P [s|e]
P [s|ẽ]

× P̂ [e]

P̂ [ẽ]
, (1)

where the ratio P̂ [e]

P̂ [ẽ]
indicates the prior likelihood ratio, which incorporates any

knowledge the DM may have previously held about the likelihood of event e.4

This setup can be used to arrive at an optimal choice rule based on the relative

costs and benefits of different actions. Take a wager offering x conditional on event

e, but y < x if ẽ obtains instead. Integrating the costs and benefits from taking the

wager into equation 1, the wager will be preferred to a sure option, c, whenever:

P [e|s]
P [ẽ|s]

× (x− c)
(c− y)

> 1, (2)

3I will generally work with discrete events (e.g., a ball extracted from an urn is blue), and
associated probabilities P [e]. For continuous outcome variables (the stock market index increases
by over 2% in a given year; cumulative rainfall during the agricultural planting season falls
between 500mm and 700mm), this constitutes a slight abuse of notation for the more accurate
P [a < e < b] =

∫ b

a
f [e]de, where f indicates the probability density function.

4This follows from an application of Bayes rule, whereby P [e|s] = P [s|e]∗P̂ [e]
P [s] . The use of

likelihood ratios means that P [s] cancels out of the expression.
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where (x − c) indicates the benefit from taking the wager, and (c − y) the cost.

This choice rule is optimal, being based on Bayesian updating and expected value

maximization. It is further used without loss of generality. If the DM has a concave

utility function defined over lifetime wealth, the choice model can be augmented

by such a preference without altering the conclusions that follow.

From a computational point of view, it is convenient to take the natural log-

arithm of the expression, thus transforming the choice rule from a product to a

sum. This will also allow for the additive combination of several signals with the

prior, which is a simpler operation than multiplication. Gold and Shadlen (2001)

explicitly discuss the neural realism of such a choice rule. The optimality of the

choice rule is unaffected by such an operation, since any monotonic transforma-

tion will leave this choice rule unaltered. Importantly, this holds both ex ante and

ex post. That is, the results presented below do not change in any substantive

way if I use the choice rule in equation 2 instead (appendix S1.2 presents such an

alternative derivation). The choice rule then becomes:

ln

(
P [e|s]
P [ẽ|s]

)
> ln

(
c− y
x− c

)
. (3)

The wager should be chosen over the sure option whenever the log-likelihood ratio

of event e and its complement ẽ exceeds the log cost-benefit ratio. The choice rule

can easily be generalized to the comparison of multiple outcomes. Appendix S1.3

presents a generalization of the model presented below to such a setting.

The model I will present below is based on the premise that mental processing

of uncertain wagers functions much like in the optimal choice rule above. Accord-

ing to an influential theoretical paradigm in neuroscience, the human brain acts

as a Bayesian inference machine, continuously combining noisy signals about the

environment with prior beliefs to come up with actionable decision parameters

(Knill and Pouget, 2004; Doya et al., 2007; Vilares and Kording, 2011). Even

numerically represented quantities, such as a monetary outcome x or an objec-

tively given probability p, will be mentally represented by a noisy signal before

entering the choice process. Noise will then arise especially when assessments of

the relevant quantities are made quickly and intuitively.
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2.2 Bayesian mental processing of noisy signals

I now present a step-by-step derivation of subjective choice parameters from the

mental encoding-decoding of choice stimuli. I will show that if the brain imple-

ments an optimal choice rule such as derived above, and if the stimuli are mentally

encoded with noise and subsequently decoded using a mental prior, then this pro-

cess will result in an actionable choice rule into which the encoding noise and the

parameters characterizing the mental prior will enter as subjective choice param-

eters. An alternative derivation based on the unlogged choice rule in equation 2

is presented in appendix S1.2, and does not alter the conclusions drawn below.

The mental encoding stage and the likelihood

Take a mental signal, r, encoding the characteristics of a given choice problem.

This mental signal can be thought of as a neural firing rate, encoding the desir-

ability of the choice stimuli in the brain. The mental signal r thus plays a role

that is analogous to that of the signal s used above to illustrate the optimal choice

rule. Just like s above, the mental signal will generally be noisy, and the noise

itself may carry useful information about the accuracy of the signal.5 Other than

above, however, not only uncertain events are represented by mental signals, but

so are nominally certain monetary outcomes, the exact nature of which also needs

to be inferred by the mind from noisy signals. I will thus assume that there are

two such mental signals, re and ro, encoding the desirability of the likelihood ratio

and the cost-benefit ratio, respectively.6 Costs c−y and benefits x−c from taking

the wager are best conceived of as approximate comparisons, rather than the pre-

cise mathematical quantities entailed by the differences depicted, thus providing
5More generally, encoding noise may be a function of the cognitive resources available for a

given task, in which case we would expect systematic adaptation of the likelihood to the prior.
The prior, in turn, would be itself learned from the signals about the outside world. In this
paper, I focus on a context where the model parameters are exogenously given.

6The setup with two mental signals corresponds to a minimal setup in which the two choices
can be compared. In particular, modelling costs and benefits through two separate mental signals
will only result in a rescaling of decision noise, and is thus inconsequential from any practical
point of view. I abstract from explicitly modelling the encoding of other aspects of the decision
situation, such as the colors associated with winning and losing options, since they are not of
central importance to the decision to be taken and do not enter the optimal choice rule derived
above. Its has indeed been shown that numerical perception is independent from location and
colour perception—see Dehaene (2011) for a book-length treatment.
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a further rationale for their noisy mental representations.7

Stimuli will have compressed mental representations for efficiency reasons, and

logarithmic functions are typically used to model such mental representations

(Dayan and Abbott, 2001; Petzschner, Glasauer and Stephan, 2015). It has indeed

been shown for both animals and humans that the activation of neurons thought

responsible for the approximate mental representations of numbers is best fit by a

normal distribution with as its argument the logarithm of the number being rep-

resented (Dehaene and Changeux, 1993; Dehaene, 2003; Nieder and Miller, 2003;

Piazza, Izard, Pinel, Le Bihan and Dehaene, 2004; Harvey, Klein, Petridou and

Dumoulin, 2013).

Further support for the normality assumption comes from the central limit

theorem, given that mental signals will be made up of the firing rates of thousands

of neurons. The underlying rationale for the logarithmic coding can be traced

back to the functional architecture of the neural system, where single neurons

tend to have receptive fields that are tuned towards the detection of stimuli falling

into a pre-determined range. In particular, Howard and Shankar (2018) show that

logarithmic spacing of receptive fields is optimal inasmuch as it allows an organism

to adapt to the statistics of the environment with maximum flexibility. Note that

this conclusion holds independently of the distribution of actual stimuli in the

environment, which is a priori unknown to the organism. I assume that re and ro

are independently drawn from the following distributions:

re ∼ N
(
ln

(
P [e]

P [ẽ]

)
, ν2

)
, ro ∼ N

(
ln

(
c− y
x− c

)
, ν2

)
, (4)

where ν is the common coding noise of the likelihood ratio and the cost-benefit

ratio, conveying information on the uncertainty with which a given stimulus is
7In particular, transformation of single numerical quantities such as modelled by Khaw et al.

(2021) could be included in the equation to provide a further rationale for the noisy comparison
modelled here, so that my approach is complementary to theirs. Tversky (1969) discusses the
superiority of such a comparative setup, inasmuch as it contains the transformation of single
quantities within as a special case and facilitates otherwise taxing value judgments. I refrain
from formally introducing such additional transformations for the sake of analytical tractability.
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perceived.8 Likelihoods of 0 or 1 are assumed to be perceived with certainty.9

The representation as the logarithm of the stimuli implies that the difference

between two stimuli necessary for those stimuli to be reliably discriminated will

be proportional to the magnitude of the stimuli themselves (Dayan and Abbott,

2001, ch. 3). This amounts to a so-called just noticeable difference in the stimulus

m, ∆m, so that ∆m
m

is a constant. The neural encoding process can thus be seen

as the driving factor behind a behavioural phenomenon that has long been known

in psychophysics as the Weber-Fechner law (Fechner, 1860).

The mental decoding stage and the posterior expectations

The information provided by the noisy mental signals re and ro needs to be de-

coded to be transformed into actionable quantities that can inform the decision

process. This is due to the uncertainty in the mental representation of the stimuli,

which makes it desirable to combine the encoded signal with prior information

about what sort of stimuli are likely to be encountered in the given decision en-

vironment. It seems natural to let the mental priors used to this effect follow a

normal distribution, since the choice of a conjugate prior distribution will min-

imize the burden in terms of neural computations. This, once again, serves to

increase the biological realism of the model.10 The priors take the following form:

ln

(
P [e]

P [ẽ]

)
∼ N

(
ln

(
P̂ [e]

P̂ [ẽ]

)
, σ2

e

)
, ln

(
c− y
x− c

)
∼ N

(
ln

(
k̂

b̂

)
, σ2

o

)
(5)

where ln
(
P̂ [e]

P̂ [ẽ]

)
is the mean of the likelihood ratio prior, ln

(
k̂

b̂

)
the mean of the

cost-benefit prior, and σe and σo are the standard deviations of the two priors.
8In what follows, I will assume the two signal to be independent of each other. Notice, how-

ever, that incorporting signal correlations is straightforward and may be beneficial in cases where
such correlations may provide additional information about the choice options (see Natenzon,
2019, for a striking example).

9This assumption is justified by the observation that, in experimental choices as well as in
real life, no probability information is typically provided for options that are certain. This, in
turn, means that there is no option value to be encoded in the first place.

10In particular, obtaining precise posterior distributions in a conjugate setup requires only re-
taining 5 different parameters in memory in the current setting. Deriving even an approximation
of the posterior in a fully general setup would require thousands of simulated points. The costs
of assuming a normal distribution when this assumption does not strictly hold true may thus be
relatively minor compared to the computational costs involved in abandoning this assumption.
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Notice that the logit-normal distributions assumed11 imply that the prior mean

will be 0 for likelihoods and costs and benefits that are equal on average, and will

tend towards plus and minus infinity as the differences between these quantities

become extreme. Such a symmetric distribution around the mean thus provides a

realistic representation of typical choice quantities.

Combining the likelihoods in equation 4 with the priors in equation 5 by

Bayesian updating, and defining ξ ,
(
P̂ [e]

P̂ [ẽ]

)1−γ
and ζ ,

(
k̂

b̂

)(1−α)

, we obtain

the following posterior expectations of the log-likelihood ratio and log-cost benefit

ratio, conditional on the noisy mental signals (see appendix S1.1):

E

[
ln

(
P [e]

P [ẽ]

) ∣∣re] = γ × re + ln(ξ) , E

[
ln

(
c− y
x− c

) ∣∣ro] = α× ro + ln(ζ), (6)

where γ , σ2
e

σ2
e+ν2

and α , σ2
o

σ2
o+ν2

constitute the weights assigned to the signals of

the log-likelihood ratio and the log cost-benefit ratio of the stimulus, relative to the

weights assigned to the means of the priors. The relative uncertainty associated

with the mental signal and the prior, as captured by ν and {σe, σo}, will thus

determine how much weight will be attributed to the signal versus the prior in the

posterior mean. Note that as the coding noise parameter ν converges to 0, the

signal will accurately reflect the stimuli, and the weights will converge to 1. For

coding noise strictly larger than 0 and weights strictly smaller than 1, however, the

expectations of the log-likelihood ratio and the log-cost benefit ratio conditional

on the signals will reflect a convex combination of signals and priors.

The actionable choice rule

The posterior expectations of the choice quantities just derived can now inform the

decision process. In particular, we must amend the optimal choice rule described in

equation 3 by replacing the objective quantities with their mental representations:

E

[
ln

(
P [e]

P [ẽ]

) ∣∣re] > E

[
ln

(
c− y
x− c

) ∣∣ro] , (7)

11A normal distribution of ln
(

P [e]
P [ẽ]

)
constitutes the canonical example of logit-normal dis-

tribution (Atchison and Shen, 1980). While the distribution of the log cost-benefit ratio falls
farther from the literal interpretation of the logit-normal in terms of likelihood ratios, it follows
the same formalism as long as we are only interested in the ratio, as is the case here.
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indicating that the wager on event e will be accepted whenever the posterior

expectation of the log-likelihood ratio exceeds the posterior expectation of the

log cost-benefit ratio. Notice, once again, that the mental choice rule is here

defined over the logged likelihood- and cost-benefit ratios simply because of the

computational advantages this entails. That is, logging the choice rule does in no

way determine the results I derive here (see appendix S1.2).

Substituting the posterior expectation in equation 6 into the choice rule in

equation 7 and solving for the mental signals, we get:

γ × re − α× ro > ln(δ)−1, (8)

where δ , ξ × ζ−1, and where ln(δ)−1 provides the threshold which the weighted

difference of mental signals on the left-hand side needs to exceed in order for the

wager to be accepted. The threshold parameter δ has a natural interpretation,

since it is made up by the prior mean of the likelihood ratio, multiplied by the

prior mean of the benefit-cost ratio (i.e., the inverse of the cost-benefit ratio)—the

more favourable the prior expectation of the likelihood ratio and of the benefit to

cost ratio, the more likely the DM will be to accept the wager.

The probabilistic choice rule

To derive an expression for the probability with which the wager will be chosen

over the sure outcome that can be observed by an econometrician, we need to

obtain an expression free of the unobservable mental signals. To this end, we

obtain the z-score of the weighted difference in mental signals in equation 8 by

jointly distributing the two signals exploiting the known distributions in equation

4. Obtaining the z-score, and comparing it to the z-score of the threshold equation

8 (see appendix S1.1), gives us the following probabilistic choice rule:

Pr[(x, e; y) � c] = Φ

γ × ln
(
P [e]
P [ẽ]

)
− α× ln

(
c−y
x−c

)
− ln(δ)−1

ν
√
γ2 + α2

 , (9)

where Φ is the standard normal cumulative distribution function. Notice how the

same parameters governing the discriminability between the choice options are
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also driving decision noise. All model parameters are indeed tightly intertwined.

The setup just derived readily generalizes to a situation where all outcomes

are translated into losses. Assume that under event e the DM stands to lose x, or

else lose y < x under ẽ, and that this scenario is compared to a sure loss of c. The

gains and losses are now flipped relatively to the setup discussed above, so that

x− c constitutes the cost from taking the wager, and c− y the benefit:

E

[
ln

(
P [e]

P [ẽ]

) ∣∣re] > E

[
ln

(
x− c
c− y

) ∣∣ro] , (10)

where all derivations follow the same steps as for gains. Such a setup will then

naturally result in decreasing sensitivity towards both gains and losses. A dispro-

portionate dislike for losses when compared to monetarily equivalent gains, such

as captured by loss aversion in PT, could arise from different mechanisms. Since

disentangling these different explanations requires specific experimental tests, loss

aversion is excluded from the empirical analysis below and left for future research.

2.3 The BIM generates PT functionals for binary wagers

I next discuss the implications of the model, and show that the setup results in

stochastic micro-foundations for choice patterns as they have been documented in

the PT literature. Note that this exercise serves purely to illustrate the mapping

between the BIM and PT, and that the empirically implementable choice rule

continues to be given by (9).

We can write the point of indifference in the nominator in (9) as follows:

ln

(
c− y
x− c

)
= α−1

[
ln(δ) + γ × ln

(
P [e]

P [ẽ]

)]
. (11)

This represents the point of indifference between (x, e; y) and c, where the likeli-

hood dimension on the right—subjectively transformed by the mental representa-

tion parameters α, γ, and δ—is traded off against the outcome dimension on the

left. Setting P [ẽ] = 1− P [e], as assumed in PT, the expression on the left can be
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transformed as follows:

ln

(
c− y
x− c

)
= ln

(
c−y
x−y

1− c−y
x−y

)
, ln

(
π(P [e])

1− π(P [e])

)
, (12)

where π(P [e]) is the solution of the equation c = π(P [e])x + (1 − π(P [e]))y,

constituting a dual-EU representation of the choice problem (Yaari, 1987), for the

decision weight π(P [e]). The right-hand side in (12) can thus be interpreted as the

log of the ratio of the decision weights assigned to the high and to the low outcome

in the wager. Substituting (12) into (11) and solving for π(P [e]) we obtain:

π(P [e]) =
δ1/α(P [e])γ/α

δ1/α (P [e])
γ/α + (1− P [e])γ/α

. (13)

For α = 1, this expression reduces to a probability-distortion function commonly

used in the decision-making literature (Goldstein and Einhorn, 1987; Gonzalez

and Wu, 1999; Bruhin et al., 2010). The general case of α ≤ 1 allows for out-

come distortions in addition to probability distortions, and shows how probability

weighting emerges from the tension between the two. The parameter γ mostly

governs the slope of the function, capturing likelihood-sensitivity. The fact that

γ decreases in the noisiness of the coding process receives support from findings

showing that probabilistic sensitivity increases with cognitive ability (Choi, Kim,

Lee, Lee et al., 2021). The parameter δ determines mostly the elevation of the

function, and thus has an interpretation of optimism when used as a weighting of

ranked gains, and of pessimism when applied to ranked losses.

The mapping just presented shows how PT-like parameters naturally emerge

from noisy mental representations of choice stimuli and their mental decoding by a

prior distribution, indicating the likelihood of different stimuli in a given environ-

ment. A difference from PT is that outcome-distortions are defined over the costs

and benefits associated with different events, rather than over single outcomes.

Such a comparative setting has a number of advantages over a outcomes being

transformed individually. For one it is more general, and could accommodate

transformations of single outcomes within it (Tversky, 1969). It will also facili-

tate the evaluation tasks, since outcomes are compared directly instead of being
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evaluated separately. The comparative setting thus seems well-suited for the ap-

proximate valuation entailed by the Bayesian inference model, since it allows to

simplify the problem when some quantities are approximately equal.

We can further derive substantive predictions about behaviour from the intu-

itions emerging from the model. Under the BIM, the parameter δ , ξ× ζ−1 has a

natural interpretation as the mean of the prior. Assume that ζ = 1, i.e. that the

prior indicates costs and benefits that are equal on average (a realistic assumption

for typical experimental setups). The constituent part of its likelihood-specific

component ξ, ψ , P̂ [e], can then be shown to coincide with the fixed point of the

probability-distortion function where the function crosses the 45◦ line. Addition-

ally assuming α = 1 and substituting ψ into the decision weight we obtain:

ln

(
π(ψ)

1− π(ψ)

)
= γ × ln

(
ψ

1− ψ

)
+ (1− γ)× ln

(
ψ

1− ψ

)
= ln

(
ψ

1− ψ

)
, (14)

from which follows π(ψ) = ψ, and by extension, π(P [e]) = P [e]. The expectation

of the mental prior thus coincides with the fixed point of the probability-distortion

function, at which probabilities are perceived without subjective distortions.

Take now the general case in which ζ 6= 1. The benefit-cost prior ζ−1 suggests

that optimism ought to be particularly high in situations that present a large

potential benefit with a small likelihood, such as lotteries. The inverse happens

for large potential losses, where the same parameter captures pessimism. This

ought to increase the likelihood of insurance uptake due to the large downside

of the wager relative to the cost of the insurance itself. Such a pessimistic prior

may then explain calibration issues that have been observed when PT parameters

estimated in the lab are used to explain insurance decisions (Sydnor, 2010). That

is, the prior for lab experiments—where costs and benefits tend to be equal on

average—should not be expected to be the same as in an insurance context, where

the large potential downside will result in increased levels of pessimism.

The setup above can immediately be applied to decision-making under risk and

ambiguity. The case of risk obtains directly by setting P [e] = p, with p an objec-

tively known probability. The case of ambiguity obtains when subjects are asked to

bet on Ellsberg-urns with unknown colour proportions (Ellsberg, 1961; Abdellaoui
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et al., 2011). Given that unknown odds are more difficult to encode than known

odds (Petzschner et al., 2015), we should expect coding noise to increase as the

information about the probabilities involved becomes more vague.12 This yields

the prediction that γa < γr, where the subscripts a and r stand for ‘ambiguity’

and ‘risk’ respectively—a phenomenon known as ambiguity-insensitivity, which is

well-documented (Abdellaoui et al., 2011; Dimmock, Kouwenberg and Wakker,

2015; Trautmann and van de Kuilen, 2015; L’Haridon, Vieider, Aycinena, Ban-

dur, Belianin, Cingl, Kothiyal and Martinsson, 2018). Once again, this prediction

is driven by the Bayesian aggregation of evidence and prior. With the evidence

carrying less certainty under ambiguity, we should indeed expect regression to the

mean of the prior to increase in strength. This prediction is further supported by

the finding that time pressure, which presumably augments coding noise, increases

ambiguity-insensitivity (Baillon, Huang, Selim and Wakker, 2018).

The prior mean, δ, may further be affected by changes in discriminability across

decision situations. Since δa =
(

ψa
1−ψa

)1−γa
, the prior is directly impacted by the

discriminability parameter γa unless ψa = 0.5. Ambiguity aversion—a dislike of

unknown probabilities unrelated to their log-likelihood ratio—could further enter

the model as a pessimistic prior, resulting in ψa < ψr. This may constitute a

plausible assumption in conditions where the experimenter may be in a position

to deceive subjects, as is the case when a colour choice is not allowed in urn choice

problems. It may also hold more generally because of the impression inherent

to the Ellsberg setting that the experimenter is expressly withholding relevant

information (Frisch and Baron, 1988; Trautmann, Vieider and Wakker, 2008).

It is now at the time to circle back to the noise term. Other than under

typical stochastic implementations of PT, where the decision model and the noise

model are combined in an ad hoc fashion, decision noise naturally emerges from the

same mental encoding-decoding process as the other model parameters. Outcome-

discriminability α and likelihood-discriminability γ directly enter the definition of
12I limit my discussion to the case of Ellsberg urns with unknown colour proportions. Findings

may well deviate from the ones described here in other contexts, since it is well-known that
ambiguity attitudes over natural sources of uncertainty may vary depending on a DM’s knowledge
of the specific context or the DM’s perceived competence in a given task (Fox and Tversky, 1995;
Abdellaoui et al., 2011).
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decision noise, ω , ν
√
α2 + γ2, and coding noise enters the definition of the dis-

criminability parameters α , σ2
o

σ2
o+ν2

and γ , σ2
e

σ2
e+ν2

. This implies that the noisiness

of the decision process will be impacted both by the uncertainty connected to the

stimulus encoding, and by the dispersion of the mental priors. Model parameters

and decision noise thus move together, resulting in an inherently stochastic model.

This has a number of substantive implications for the decision-making patterns

we would expect under risk and uncertainty. For one, parameters estimated in a

PT setup, which neglects these intricate interrelations, should be correlated in a

systematic way. This concerns primarily correlations between the noise parameter

and likelihood- and outcome-sensitivity, with knock-on effects on other parame-

ters. The neglect of these systematic correlations could result in biased inferences

on the parameters of deterministic models if the noise process is mis-specified

relative to the true data-generating process.

A further consequence of the role played by ν in the definitions of α and γ is

that no strict separability between the likelihood and outcome dimensions seems

warranted, in opposition to what is postulated by PT. We may thus expect coding

noise to increase in stakes. Frydman and Jin (2022) present a model of efficient

coding, in which the noisy coding parameter adapts to the prior variance exactly

in this way. Such an increase in noisiness should then immediately be reflected

in lower outcome-discriminability, resulting in apparent patterns of increasing rel-

ative risk aversion (Holt and Laury, 2002). The same change will also result

in apparent changes in likelihood-discriminability, thus impacting the probability

dimension. Under PT, such effects will take the form of violations of probability-

outcome separability, whereby changes in stakes ought to be reflected purely in

utility curvature and leave probability-distortions unaffected. Such violations are

indeed well-documented in the literature (Hogarth and Einhorn, 1990; Fehr-Duda

et al., 2010; Bouchouicha and Vieider, 2017).

The flip-side of this issue is observed when moving from risk to uncertainty

or ambiguity. Given the increase in coding noise we expect under ambiguity, the

BIM predicts a lowered level of likelihood-discriminability. The latter, in turn, is

expected to go hand-in-hand with a lowering of outcome-discriminability. While

remaining undocumented to date, such a pattern would contradict PT, according
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to which ambiguity attitudes ought to be reflected purely in probability weighting

(Wakker, 2010; Abdellaoui et al., 2011; Dimmock et al., 2015).13

3 Empirical evidence

In this section, I empirically test the model in three different settings. First, I test

the novel predictions about parameter correlations under PT in data originally

collected to fit PT functions. Second, I test the novel prediction about probability-

outcome separability under ambiguity in a PT setting. And third, I present a

binary choice experiment randomly varying whether options are presented as risky

lotteries, as traditionally done in the literature, or as ‘deterministic mirrors’ of

those lotteries, and use the data to directly pitch the BIM against PT.

3.1 PT parameters show systematic correlations with noise

I start by examining parameter correlations in PT models. I use the rich individual-

level data of Bruhin et al. (2010) collected in 3 different experiments, to estimate

distributions of PT parameters (results based on the 30 country data of L’Haridon

and Vieider (2019) are similar, see appendix S2.2). The basic econometric frame-

work follows the one in the original paper (see appendix S2.1 for details). Other

than in the original paper, I use Bayesian random parameter models to estimate

the model parameters (Gelman, Carlin, Stern, Dunson, Vehtari and Rubin, 2014b).

This method is geared towards maximizing the predictive power of the model for

new data, rather than towards optimizing its fit to existing data.

The BIM predicts that the parameters governing sensitivity towards outcomes

and likelihood ratios are governed by coding noise, jointly with the estimated prior

variance. This results in a prediction that, when estimating a PT model, the noise

term ought to be correlated with the decision parameters. In a typical PT setup

plus noise, on the other hand, the additive noise term is assumed to take the form

of ‘white noise’, and thus to be independent of the decision model itself. A viola-

tion of this assumption would be problematic, since any inferences on preference
13It is, of course, also in contradiction to models that capture ambiguity attitudes purely

through utility curvature.
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parameters one draws from the model may be sensitive to the specific assumptions

about noise. I will test these predictions using Spearman rank correlations on the

estimated parameters. Any p-values reported are always two-sided.

To ensure comparability with the model derived above, I will use power util-

ity throughout, so that u(x) = xα̂. I will use the Goldstein and Einhorn (1987)

probability-distortion function for the same reason, with parameters γ̂ and δ̂,

where the ‘hat’ serves to distinguish the PT parameters from the equivalent BIM-

generated parameters. These same functional forms were also used in the original

paper.14 I will refer to γ̂ as likelihood-sensitivity, and to α̂ as outcome-sensitivity,

to distinguish them from the equivalent BIM-derived parameters, to which I re-

fer as discriminability parameters. While I use the additive error form used in

the original study, alternative error specifications, such as e.g. Wilcox’s (2011)

contextual error, do not affect the conclusions I draw.

Figure 1 shows correlations between decision noise and likelihood-sensitivity

γ̂ for both gains and for losses. Note that the econometric model allows for het-

eroscedasticity in errors across outcome domains, and the errors for gain and losses

are thus not the same. Panel 1(a) shows a scatter plot of the PT noise parameter,

ω̂+, against the likelihood-sensitivity parameter, γ̂+, for gains. The two param-

eters show a strong negative correlation (ρ = −0.422, p < 0.001), which is also

present in each of the 3 individual experiments. The results for losses, shown in

panel 1(b), are very similar (ρ = −0.389, p < 0.001). For both gains and losses,

a small group stands out that has virtually no noise and likelihood-sensitivity

arbitrarily close to 1. These are the expected value maximizers detected in the

mixture model of Bruhin et al. (2010), who most likely based their responses on

precise calculation rather than on quick and approximate judgments.

Figure 2 shows the correlations between the noise parameter and the outcome

sensitivity parameter, α̂, with panel 2(a) showing the results for gains. There is

a negative correlation in the Beijing 05 data (ρ = −0.566, p < 0.001), as well

as in the Zurich 06 data (ρ = −0.357, p < 0.001), but a positive correlation in
14Prelec (1998) presents an popular alternative 2-parameter weighting function. Notice, how-

ever, that the two weighting functions provide a very similar fit except for prospects with ex-
tremely small or extremely large probabilities, which do not occur in the data I analyze.
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(a) Scatter plot of ω̂+ and γ̂+ (b) Scatter plot of ω̂− and γ̂−

Figure 1: Scatter plot of PT parameters, likelihood-sensitivity
The parameters have been obtained from the estimation of a PT model plus additive noise. The different
colours and shapes represent the 3 experiments in Bruhin et al. (2010): ZH03 stands for Zurich 03; ZH6
for Zurich 06; and BJ05 for Beijing 05. Solid lines indicate regression lines. The dashed lines indicate the
median parameter values. Some outliers may be cut for better visual display.

the Zurich 03 data (ρ = 0.279, p < 0.001). Noise can thus be correlated with

either excess outcome sensitivity or with insensitivity towards outcomes under

PT. This intuition is further confirmed for losses, shown in panel 2(b). Here we

witness a positive correlation in the aggregate data (ρ = 0.258, p < 0.001), as

well as in the three individual experiments (ZH03: ρ = 0.07, p = 0.38; BJ05:

ρ = 0.612, p < 0.001; ZH06: ρ = 0.558, p < 0.001). This is driven by concave

utility for losses in all three experiments.

(a) Scatter plot of ω̂+ and α̂+ (b) Scatter plot of ω̂− and α̂−

Figure 2: Scatter plot of PT parameters, outcome-sensitivity
The parameters have been obtained from the estimation of a PT model plus additive noise. The different
colours and shapes represent the 3 experiments in Bruhin et al. (2010): ZH03 stands for Zurich 03; ZH6 for
Zurich 06; and BJ05 for Beijing 05. The dashed lines indicate the reference parameter values of 1 (linear
utility). Some outliers may be cut for better visual display.

The correlations just shown further have knock-on effects on correlations be-

tween the deterministic model parameters. In particular, likelihood-sensitivity γ̂

and outcome-sensitivity α̂ will be either positively or negatively correlated, de-
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pending on whether the correlation of ω̂ with α̂ is negative or positive. For in-

stance, likelihood sensitivity and outcome-sensitivity for gains are positively cor-

related in the Beijing 05 data (ρ = 0.463, p < 0.001), as well as in the Zurich

06 data (ρ = 0.753, p < 0.001). They are, however, negatively correlated in the

Zurich 03 data (ρ = −0.254, p < 0.001), given the positive correlation between

noise and outcome-sensitivity. Larger values of γ̂ coincide with values of δ tending

towards 1 (see appendix S2.2). These effects are not foreseen by PT, but line up

exactly with the predictions emerging from the BIM.

3.2 Probability-outcome separability under ambiguity

The BIM predicts ambiguity-insensitivity based on the heightened level of dif-

ficulty in assessing unknown probabilities. Such patterns are well-documented

in the literature (Abdellaoui et al., 2011; Dimmock et al., 2015; Trautmann and

van de Kuilen, 2015; L’Haridon et al., 2018). Enke and Graeber (2019) have doc-

umented empirically that this phenomenon goes hand-in-hand with a lowering of

the confidence people declare to have in their choices, which is consistent with the

account presented here. In addition, however, the model presented above predicts

a novel violation of PT’s probability-outcome separability, whereby utility curva-

ture is also affected by ambiguity. This constitutes a violation of PT, since utility

curvature for risk and ambiguity is assumed to be the same under PT due to the

strict separation of the likelihood and outcome dimensions inherent in the model

(Wakker, 2010; Abdellaoui et al., 2011; Dimmock et al., 2015). In this section, I

present a test of that prediction in a PT setup.

Published data on ambiguity attitudes tend to be limited in that they have

been collected explicitly to elicit parameters under the assumption that PT holds

(or else for nonparametric analysis). That is, they typically lack the sort of stimuli

that would allow one to assess whether α̂ may be affected by ambiguity in addition

to γ̂. To test this prediction, I thus use an original dataset that contains a richer

choice setup. The data contain observations for 47 subjects indicating certainty

equivalents for both risky and ambiguous lotteries in a within-subject design.

The data structure and experimental procedures closely follow those in L’Haridon
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et al. (2018). The stimuli are, however, richer in that the stimuli for risk are

replicated exactly for ambiguity, including variation over outcomes and non-zero

lower outcomes for both risk and ambiguity, thus allowing for the identification

of utility curvature under ambiguity as well as under risk (Fehr-Duda and Epper,

2012). The econometric approach closely follows the setup used above for the data

of Bruhin et al. (2010). Further details can be found in appendix S3.

(a) Densities of γ̂r and γ̂a (b) Densities of α̂r and α̂a

(c) Posterior densities of the means (d) Density difference of means

Figure 3: Likelihood- and outcome-sensitivity under risk and ambiguity
Densities of individual-level parameters (top) and of the mean parameters (bottom) of likelihood- and
outcome-sensitivity. Panel 3(d) plots the difference in posterior draws between the two means, which is the
quantity used in Bayesian tests of mean differences (Kruschke, 2014).

Figure 3 shows density plots for γ̂ and α̂, for risk and ambiguity. The differ-

ence in individual-level estimates between risk and ambiguity for γ̂, shown in panel

3(a), is sizeable. This sort of lowering of likelihood-sensitivity under ambiguity

relative to risk, termed ambiguity-insensitivity, is indeed a standard finding in

the PT literature. The difference in individual-level parameters between outcome

sensitivity for risk and ambiguity is displayed in panel 3(b). While it is less pro-

nounced, the distribution under ambiguity is shifted to the left. This is confirmed

by a Mann-Whitney test on the paired individual-level parameters, indicating that
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outcome-sensitivity is indeed reduced under ambiguity (p = 0.002, two-sided).

One can further test for the existence of differences using directly the posterior

draws of the mean parameters for risk and ambiguity. Panel 3(c) shows the density

of the posterior draws of the means of the two utility parameters for risk and

ambiguity. The utility parameter for ambiguity is clearly smaller than the one for

risk. To assess the statistical significance of this difference, however, we need to

look directly at the difference in posterior draws, given that the draws are not

independent (Gelman et al., 2014b; Kruschke, 2014). That difference is shown in

panel 3(d). The overlap with 0 is minimal, and 0.99 % of the posterior probability

mass falls above 0, indicating a significant difference in the means. This results in

a violation of the probability-outcome separability precept of PT. It does, however,

conform precisely to the prediction emerging from the Bayesian Inference Model.

3.3 Lottery choice versus deterministic mirrors

The tests shown so far aimed at testing predictions the BIM makes about what we

should observe if we estimated the data in a PT setup, if the BIM is the true data-

generating model. Here, I present a direct test of PT against the BIM. To this

end, I deploy a variation of Oprea’s (2022) deterministic mirrors. One potential

shortcoming of the approach taken by Oprea (2022) is that the choice list format

may be driving some of the results. That is, if some subjects pick switching points

that mechanically fall towards the middle of the list, this could produce the same

sort of patterns for risk and deterministic mirrors. I thus adapt the mirror setup to

a rich binary choice setting to test the robustness of the effect. This furthermore

allows me to field a number of additional tests, including structural estimations of

the BIM for both risk and mirrors, out-of-sample predictive tests, and robustness

tests using chronometric data.

The experiment was conducted in an introductory class of Behavioural Eco-

nomics at Ghent University using a between-subject design. Students had heard

about expected value and expected utility theory, but had not yet been introduced

to behavioural models of decision making. Students were told to bring a laptop

to class. 10 subjects were randomly selected to play one of their decisions for
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real money. After a short introduction mentioning the length of the experiment

and the randomized incentive structure, the lecturer shared a link for the online

experiment with the students. 133 students submitted complete responses in the

allocated time.

Figure 4: Screenshot of choice situation

Figure 4 shows a screenshot of the experiment. Subjects had to indicate their

choice between two options. Each option had a number of boxes associated with

monetary payoffs. Option A had some boxes associated with a higher payoff, and

some with a lower payoff. The number of high outcome boxes could take the value

12, 32, 42, 48, 52, 58, 68, 88. The winning outcome ranged from e18 to e32, and

the tasks included non-zero lower outcomes as well (see table 1 for a list). Option

B always contained 100 boxes with the same outcome, which was made to vary in

steps of e1 between the high and the low outcome in option A. The binary choice

options were, however, completely randomized, as was the position of option A

and option B on the screen. These stimuli were chosen to reflect typical choice

stimuli used to investigate decision making under risk. Subjects faced 200 such

binary choices in total, of which 20 were repeated choices.

The instructions provided the following information. First, all subjects saw an

explanation of the general structure of the choice task. They were told that they

had to decide between two options, and how different boxes could have different

payoffs attached to them. Subsequently, subjects were randomly allocated to one

of two treatments—a random box treatment, and an average box treatment. In

the random box treatment, they learned that one random box from the chosen

option would be opened to determine their payoff, following standard procedures
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Table 1: Choice tasks and choice proportions by treatment

characteristics risk mirrors ranksum test
task high low prob risky SD complex SD p-value

1 18 0 0.12 0.14 0.35 0.14 0.34 0.672
2 18 0 0.32 0.22 0.42 0.24 0.43 0.614
3 18 0 0.68 0.52 0.50 0.55 0.50 0.142
4 18 0 0.88 0.70 0.46 0.72 0.45 0.301
5 27 5 0.48 0.39 0.49 0.40 0.49 0.704
6 27 5 0.52 0.49 0.50 0.53 0.50 0.287
7 32 5 0.42 0.39 0.49 0.38 0.49 0.718
8 32 0 0.58 0.42 0.49 0.46 0.50 0.334
9 43 18 0.48 0.42 0.49 0.45 0.50 0.410

Summary table of task characteristics and choice proportions. The column ‘risky’ indicates the choice
proportion of the risky option A in the random box treatment. The column ‘complex’ indicates the
choice proportion of the complex option A in the average box treatment. The column ‘ranksum test’
indicates p-values of Wilcoxon rank sum tests executed on choice proportions of Option A. The tests
are based on 72 subjects assigned to the average box treatment, versus 61 subjects assigned to the
random box treatment.

in the risky choice literature. In the average box treatment, on the other hand,

they learned that they would be paid the amount in the average box. That is,

the payoffs would be summed over the 100 boxes, and divided by 100. Examples

served to clearly illustrate the choice situation. Subjects furthermore had to go

through a number of comprehension questions that were meant to drive home the

payoff mechanism (full instructions in appendix S4).
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Figure 5: Choice proportions for risky or complex option
The graph plots the number of high-payoff boxes on the x-axis against choice proportions of the risky
option (random box treatment) or the complex option (average box treatment). Given the equal steps
in sure options, the graph can be interpreted as a (stochastic) variant of a dual-EU probability-distortion
function.

Figure 5 shows the choice proportions for the risky option (random box treat-

ment) or the complex option (average box treatment) for tasks providing different
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numbers of boxes associated with e18, or else 0. In the lottery treatment, the

data reveal an inverse-S shape as typically found in the PT literature. Strikingly,

the same pattern occurs in the mirror treatment, where no risk is present and

choices are between deterministic options. Indeed, there is no difference between

any of the choice proportions, and the same is true for the other choice tasks not

shown in the graph (see table 1 for a complete list). Risk and choice complexity

in a riskless setup thus produce virtually identical results.

Next, I estimate equation (9) on the complete data to examine the individual-

level parameters. Figure 6, panel 6(a), shows a density plot of the individual-level

likelihood-discriminability parameters (lottery treatment) and the individual-level

‘complexity-discriminability’ parameters (mirror treatment). Both distributions

present a peak around 0.5, and look very similar. The lottery-discriminability has

some probability mass to the left of the complexity-discriminability distribution,

possibly indicating an effect of risk on top of the complexity effect, as also discussed

by Oprea (2022). That effect, however, appears to be relatively small.
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Figure 6: Individual-level parameters for lotteries and mirrors

Panel 6(b) shows a scatter plot of the parameters capturing sensitivity towards

the number of boxes (i.e., likelihoods for risk and complexity for mirrors), and sen-

sitivity towards outcomes. There is no indication that behaviour for mirrors might

converge towards behaviour resembling value maximization (i.e., a deterministic

choice for the option with the higher value). Remarkably, the results not only

show equal distortions driven by the number of boxes across the two treatments,

28



but also equal distortions of outcomes, providing direct evidence that outcome-

discriminability is also driven by the complexity of the situation, rather than by

any inherent attitude towards risk. This results in a clear violation of PT, and is

indeed hard to reconcile with any deterministic model of risky choice.

The strength of this test relies on the insight that PT cannot account for these

similarities across lotteries and deterministic mirrors. The BIM, however, can

handle them easily since it models the perception of numerical quantities, rather

than attitudes towards risk per se. This can be shown by directly comparing

the predictive performance of the two models on the data. The BIM will then

deploy one and the same modelling setup for both treatments, whereas PT will

directly compare the utilities of the two deterministic outcomes in the mirror

treatment, plus an additive error term just like the one used for risk. I test model

performance based on their out-of-sample predictive ability (Gelman, Hwang and

Vehtari, 2014a; Vehtari, Gelman and Gabry, 2017).15

Given the structure of the data, predictive tests can be executed in different

ways. One way is to conduct leave-one-out sampling leaving out one choice at

the time and predicting it based on the aggregate-level parameters estimated on

the remaining data. Such a test yields a clear verdict in favour of the Bayesian

Inference model (ELPD difference of −7653.5. with a standard error of 239.6).

Arguably, however, predictive tests should take into account the hierarchical na-

ture of the data, which comprise 200 different choices per individual. Such a true

out-of-sample test indeed seems essential, given that imposing a given structure

could yield spurious results in fitted data (Alós-Ferrer and Garagnani, 2022).16 I

thus conduct a stratified leave-k-out test, whereby a subset of k% of the choices

of each individual are removed and predicted based on the remaining (100− k)%

of the observations. This procedure is repeated for each subset of k% of the data.

Notice that this is a harder test than grouping the data and predicting across
15The results obtained by means of out-of-sample cross-validation are similar to, but more

stable than, those obtained using the Watanabe-Akaike information criterion (WAIC; Watanabe
and Opper, 2010), which is a Bayesian generalization of the Akaike information criterion (AIC).
Using the latter instead does not affect the conclusions drawn in any way.

16In particular, Alós-Ferrer and Garagnani (2022) show that simply fitting a utility difference
plus additive noise to simulated random choices can spuriously show a sigmoidal relationship
between utility differences and strength of preference, which results purely from the stochastic
choice model iself and has no grounding in the actual data.
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subjects in the present setting, since it means that the comparison takes place

within-subject and hence within-treatment. Setting k = 10, the results once again

indicate that the BIM clearly outperforms PT (ELPD diff. of −753.8, se = 51.9).

Finally, let us take a look at decision times across the two treatments. Decision

times are related to decision difficulty, and have been shown to be predictive

of utility differences (Alós-Ferrer et al., 2021; Alós-Ferrer and Garagnani, 2022).

Based on standard models of decision making under risk, we would expect decision

times for lotteries and mirrors to look rather different. In particular, decision

times in risky choice have been shown to be linked closely to differences in the

expected utilities of choice options, whereas they tend to be only weakly linked

to differences in expected values (Alós-Ferrer and Garagnani, 2022). For mirrors,

on the other hand, we should expect decision time to peak around the point of

equality in (expected) values, since the task boils down to picking the option with

the higher deterministic value. According to the BIM, however, we should not see

major differences between the treatments. In both cases, the BIM thus predicts

decision time to follow an inverted-U shape, with its peak at the point of no

discriminability, where the two choice options become difficult to tease apart.
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Figure 7: Average decision time as a function of EV difference and discriminability
Plot of expected value difference between the choice options (panel 7(a)) and discriminability between
the choice options (panel 7(b)) against average decision time. Both differences in EV and differences in
discriminability have been normalied to fall between −1 and 1. The discriminability plot has been obtained
by means of a binning procedure applied to disciminability. The solid lines indicate a least squares fit of a
second-degree polynomial.

Figure 7 plots average decision times against the difference in expected values

(panel 7(a)) and against the discriminability given by the nominator of (9) (panel
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7(b)). Decision times increase towards the point of equality in expected values,

continue to increase slightly thereafter, and subsequently decline. Importantly,

however, there is no difference whatsoever in this trend for lotteries and mirrors,

as deterministic models of decision making under risk would suggest. The inverse-

U shape as a function of discriminability in the Bayesian inference model shown

in panel 7(b) is much more pronounced than the curve for the EV difference. The

peak in decision times coincides with the point of zero discriminability, where both

options appear equally good, and shows no difference between lotteries and mir-

rors. This further supports the conclusion that decisions in lotteries and mirrors

are driven by the same processes, in contradictions to standard models of risky

choice, but in line with the predictions of the Bayesian Inference Model.

4 Conclusion

Traditional models of decision-making under risk and uncertainty represent be-

haviour by means of deterministic models applied to objective stimuli. These

deterministic models are augmented by an independently chosen stochastic model

to allow for choice parameters to be recovered from noisy data. The combination

between decision model and stochastic model of choice, however, is arbitrary. Such

arbitrary combinations of decision models and stochastic choice architectures may

bias inferences on the model parameters and even about the correct underlying

model if the stochastic assumptions are not warranted.

The Bayesian inference model presented in this paper turns this process on its

head. Starting from the insight that the choice stimuli themselves may be encoded

by noisy mental signals, I have shown how the optimal decoding of these signals

by means of a mental prior may result in decisions that deviate systematically

from the underlying optimal choice rule, and in particular, which may result in

systematic outcome- and likelihood-distortions akin to those documented in the

prospect theory literature. While providing micro-foundations for PT-like choice

patterns, the model simultaneously predicts PT violations, in particular pertaining

to the strict separation between the probabilistic and outcome dimensions under

PT. Other than PT, the model is not specifically geared at describing attitudes
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towards risk and uncertainty, but rather captures the noisy perception of numerical

quantities. The model is thus applicable not only to lottery choice, but also to the

deterministic mirrors of those lotteries introduced by Oprea (2022).

The model proposed in this paper shares a common intuition with other models

of adaptive behavior. Most notable is the connection to the evolutionary models

of Robson (2001) and Netzer (2009), who propose a fitness-maximizing model

predicated on limited discernibility of outcomes to derive a utility function that

adapts to the local environment. A common element is that all these models

incorporate the intuition of just noticeable differences in utility, although in the

BIM this is a result of the compressed mental representation of stimuli, whereas

it is a modelling assumption in the Robson-Netzer framework, where it results in

utility taking the form of a step function.

There are also commonalities with other models of noisy perception. Steiner

and Stewart (2016) present a model in which probabilities of binary wagers are

subject to noisy perception, similar to the intuition developed here. Other than in

the model presented here, however, outcomes are processed without uncertainty,

and the model makes no predictions about decision noise. The sure option is the

quantity driving probability distortions, rather than a learned prior summarizing

the most likely stimuli in the environment. Netzer et al. (2021) present a model

in which an agent receives noisy signals about different lottery arms. The agent

may thereby decide to oversample some lottery arms, which could lead to the

overweighting of small probabilities. While some of the underlying intuitions are

similar to those developed in this model, the focus is different. Netzer et al. (2021)

primarily focus on the question of what happens when decision noise goes to zero,

resulting in insights that are complementary to those presented in this paper.

The general framework based on the noisy neural coding of stimuli—and its

extension to setups allowing for the continuing adaptation of the model parame-

ters to changes in the environment—presents the promise of a unifying theory of

individual choice behaviour. On the one hand, encoding noise plays a central role

in the model, driving deviations from optimal behaviour, such as expected value

maximization for small-stake risks. This results in behavioural regularities that

are likely to impact decisions far beyond the particular setup used in this paper.
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For instance, we may well expect the presentation format of stimuli to impact

choices, and the noisiness of stimulus encoding may be expected to increase sys-

tematically with the difficulty of the choice tasks. The precise implications of this

insight deserve close attention, and are thus left for future work. Possibly the most

far-reaching implications, however, concern the role of the prior, which amongst

the recent contributions is unique to the model here presented. Understanding

both short term determinants in the lab, and long-term determinants of the prior

should thus be a priority topic for future research.
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ONLINE APPENDIX

Decisions under Uncertainty as Bayesian Inference

S1 Derivation of the Bayesian Inference Model

S1.1 Derivation details

In this section, I provide additional details about the derivations underlying the

equations shown in the main text. Combining the likelihoods in equation 4 in the

main text with the priors in equation 5 in the main text by Bayesian updating,

we obtain the following posterior distributions conditional on the mental signals:

ln

(
P [e]

P [ẽ]

) ∣∣re ∼ N ( σ2
e

σ2
e + ν2

× re +
ν2

σ2
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where we define γ , σ2
e

σ2
e+ν2

and α , σ2
o

σ2
o+ν2

. It follows that ν2

σ2
e+ν2

= 1−γ and ν2

σ2
o+ν2

=

1 − α. Taking the expressions multiplying the logarithms to the exponent and

further defining ξ ,
(
P̂ [e]

P̂ [ẽ]

)1−γ
and ζ ,

(
k̂

b̂

)1−α
gives the posterior expectations

shown in equation 6 in the main text.

We can then substitute the posterior expectations into the mental choice rule

in equation 7 to obtain the threshold equation 8 in the main text. Given that

re and ro follow a normal distribution, their weighted difference in equation 8

will itself follow a normal distribution with an expectation equal to the weighted

difference of the means of the distributions of re and ro:

γ × re − α× ro ∼ N
(
γ × ln

(
P [e]

P [ẽ]

)
− α× ln

(
c− y
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)
, ω2

)
, (17)

where ω ,
√

(γ2 + α2)× ν2 represents the standard deviation of the weighted
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difference of noisy mental signals. This yields the following z-score:

z =
γ × re − α× ro −

[
γ × ln

(
P [e]
P [ẽ]

)
− α× ln

(
c−y
x−c

)]
ω

, (18)

which follows a standard normal distribution. Subtracting this z-score from an

equivalent z-score for equation 8 yields the probabilistic choice rule in equation 9.

S1.2 Derivation for unlogged choice rule

The derivations in the main text as well as the details in the last subsection were

based on the logarithmic choice rule in equation 3. If we were to use the median of

the posterior instead of its mean in the choice rule, then the derivations would be

identical if we were to base them on the unlogged choice rule in equation 1 instead.

Körding and Wolpert (2004) show that this is indeed optimal if the absolute value

of the error is used as a loss function. Given that the derivation in the main

text is based on the mean, however, the two choice rules will result in a slightly

different interpretation of the prior mean. I here present the derivation based on

the unlogged choice rule. We then have the following mental choice rule:

E

[
P [e]

P [ẽ]

∣∣re] > E

[
c− y
x− c

∣∣ro] . (19)

If we want to use the posterior expectation in the choice rule instead of the median,

as done here, then we need to obtain the posterior means of the unlogged quantities

by taking the exponential of the expectations in equation 6 in the main text:

E
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) ∣∣re] = eγ×re+ln(ξ)+ 1
2
σ̂2
e , E

[(
c− y
x− c

) ∣∣ro] = eα×ro+ln(ζ)+ 1
2
σ̂2
o , (20)

where σ̂2
e , ν2σ2

e

ν2+σ2
e
and σ̂2

o , ν2σ2
o

ν2+σ2
o
are the posterior variances. We can now

substitute these quantities into the mental choice rule above, to obtain:

eγ×re+ln(ξ)+ 1
2
σ̂2
e > eα×ro+ln(ζ)+ 1

2
σ̂2
o (21)
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Taking the logarithm of both sides, defining ξ̂ , eln(ξ)+ 1
2
σ̂2
e and ζ̂ , eln(ζ)+ 1

2
σ̂2
o , we

obtain:

γ × re − α× ro > ln(δ̂)−1, (22)

where δ̂ , ξ̂ × ζ̂−1. All further derivations proceed like above. The sole difference

with the results presented in the main text thus flow from the difference in defini-

tion of δ̂ versus δ. That is, the variance of the priors will enter into the definition

of δ̂, while it will not enter the definition of δ. In the main text, I argued that the

logged choice rule appears more plausible than its unlogged version for computa-

tional reasons. The less intuitive formulation of the prior mean emerging from the

unlogged choice rule may constitute a further argument for my preferred setup.

That being said, the difference between the two setups is quantitative in nature,

rather than qualitative, and it does not affect the main conclusions drawn in the

paper.

S1.3 Generalization to multiple outcomes

The model presented in the main text can easily be extended to the comparison

of multi-outcome wagers, where it results in weighted, state-wise comparisons.

Extensions of the model in the main text to the comparison of binary prospects

with the same state space, such as in the popular task of Holt and Laury (2002),

obtain trivially and are not discussed further.

The choice rule in equation 3 can easily be generalized to multiple outcomes. To

preserve mathematical tractability, let us assume that a wager (x1, e1;x2, e2; ....;xn, en),

offering x1 if event e1 occurs, x2 if event e2 occurs, etc., is compared to a sure out-

come, c. For convenience of exposition, I will assume that outcomes are ordered

from highest to lowest, although this is not essential to the model itself. Com-

parisons of two non-degenerate wagers will result in state-wise comparisons, but

is otherwise identical. The optimal choice rule according to which the risky wager

will be chosen will then take the following form:

P [e1]

P [en]

(x1 − c)
(c− xn)

+
P [e2]

P [en]

(x2 − c)
(c− xn)

+ ...+
P [en−1]

P [en]

(xn−1 − c)
(c− xn)

> 1, (23)
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which tallies up the relative costs and benefits of the wager. The equation takes the

form of an optimal choice rule used in signal detection theory (Green, Swets et al.,

1966). Notice how the choice rule indeed incorporates the same two principles

as the binary rule in the main text—optimal belief updating, and expected value

maximization. While at first sight the rule may seem to compare everything

to the worst-case scenario, the choice rule actually enshrines within all pairwise

comparisons. To see this, let Vij be the relative valuation to two arbitrary states

of nature. We can then derive this valuation from the choice rule above as follows:

Vij =
Vin
Vjn

=

P [ei]
P [en]

(xi−c)
(c−xn)

P [ej ]

P [en]

(xj−c)
(c−xn)

=
P [ei]

P [ej]

(xi − c)
(xj − c)

. (24)

I postulate that each term in the comparison above is evaluated in parallel

within a neural network, before being recomposed in the end. That implies that

each neural network will generate signals for the log-likelihood ratio, as well as for

the log-cost benefit ratio of the particular state-comparison it is encoding. For an

arbitrary comparison, we will thus observe the following likelihoods

rie ∼ N
(
ln

(
P [ei]

P [en]

)
, ν2

)
, rio ∼ N

(
ln

(
1(xi − c)
c− xn

)
, ν2

)
. (25)

where 1 = 1 if xi > c, and 1 = −1 if xi < c. Notice that, other than in the

binary case described in the main text, I now model the signal ro as a signal for

the relative benefit-cost ratio. Indeed, one can no longer simply refer to ‘costs’ and

‘benefits’ in the general case. For one, benefits will always be relative. What is

more, while the difference c−xn will always be positive, the difference xi−c could

be either positive or negative, thus constituting a ‘relative benefit’ or a ‘relative

cost’, depending on the sign of the expression.

We can now follow the same steps as in the binary setup to obtain a threshold

equation and a contribution to the overall evidence in favour of taking the wa-

ger from each of the single comparisons. That is, the comparisons are modelled

as being executed in parallel in a neural network, so that each comparison will
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ultimately have a contribution equal to the following z-score:

zi =
γln

(
P [ei]
P [en]

)
+ 1αln

(
xi−c
c−xn

)
− ln(δ)−1

ν
√
α2 + γ2

(26)

The contributions of the different state-wise comparisons can then simply be com-

bined into an overall contribution, since the sum of n standard normal random

variables will itself follow a standard normal distribution. Notice that some of

these contributions may add to the attractiveness of the wager, while other may

detract from it, depending on the relative size of xi and c.

While it may be interesting to augment such a model with an endogenous

account of attention to different lottery arms, some reasonable intuitions already

obtain from the stylized setup above. For one, lottery arms that have high benefits

relative to costs and favourable odds, or vice versa, will stand out, whereas arms

with roughly equal odds and similar costs and benefits will have their contribution

drowned out by the noise, and will thus not contribute anything to the overall

evaluation. Furthermore, once the contributions of the different lottery arms are

combined, the noise is predicted to increase in a factor of
√
n. That is, we will see

a progressive increase in the noisiness of responses as the number of outcomes in a

wager (or, more generally, the number of states to be compared) increases, albeit

at a decreasing rate. This corresponds closely to the intuition of what we would

expect to happen as the choice task becomes more and more complex.

S2 Additional results on PT correlations

This section presents additional details and results for the analysis of 2-outcome

wagers under risk in a PT setting.

S2.1 Estimation of the Bayesian hierarchical model

I estimate individual-level parameters using Bayesian hierarchical models (Gelman

and Hill, 2006; Gelman et al., 2014b; McElreath, 2016). I conduct the analysis

using Stan (Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker,
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Guo, Li and Riddell, 2017). Take a parameter vector θθθi, indicating individual-level

parameters. This vector follows the following distribution:

θθθi ∼ N (θθθ,Σ), (27)

where θθθ is a vector of hyperparameters containing the means of the individual-level

parameters, and Σ is a variance-covariance matrix of the individual-level parame-

ters. I estimate the parameters in Stan launched from Rstan (Stan Development

Team, 2017). Estimations typically employ 4 chains with 2000 iterations per chain,

of which 1000 are warmup iterations—the default settings of Stan. I checked

convergence by examining the R-hat statistics, and by checking for divergent it-

erations. The model endogenously estimates the priors for the individual-level

parameters from the aggregate data, resulting in partial pooling. This is indeed

a central strength of the model, which tends to reduce issue with overfitting of

few observations. The priors for the estimation of the aggregate-level means are

chosen in such a way as to be mildly regularizing (McElreath, 2016). That is, their

variance is chosen in such a way that all plausible parameters fall into a region

attributed high likelihood, but narrow enough to nudge the simulation algorithm

towards convergence. In any case, the datasets I use have sufficient data at the

aggregate level for the priors chosen to have little or no impact on the final result.

Following the estimation approach used in Bruhin et al. (2010), I use the

density around the observed switching point to estimate the model. The model

takes the following form:

ce ∼ N (u−1[w(p)u(x) + (1− w(p))u(y)], ω̂2 × |x− y|), (28)

with u(x) = xα̂ and w(p) = δ̂pγ̂

δ̂pγ̂+(1−p)γ̂
, and where multiplying the variance ω̂ by

|x − y| allows for heteroscedasticity across choice lists with different step sizes

between choices, following the approach in the original paper from which I took

the data. Contextualizing choices by letting the error be heteroscedastic across to

the utility difference, |u(x) − u(y)|, such as proposed by Wilcox (2011), does not

affect the conclusions I draw.

45



The priors are chosen such as to be informative about the expected location of

the model parameters, without imposing any undue restrictions on the data. This

is typically referred to as mildly regularizing priors, and it helps convergence in

the model. For instance, the prior chosen for γ̂ has a mean of 0.7 on the original

scale, with 95% of the probability mass allocated to a range of [0, 3.92]. This can

be expected to encompass most likely parameter values. Given furthermore the

large quantity of data present at the aggregate level, the data can easily overpower

the prior even for parameters falling outside this range. Making the prior more

diffuse and shifting the mean to e.g. 1, does not affected the estimated parameters

in any way, showing that the prior has only a minimal influence on the ultimate

parameter estimates. The full model in Stan is as follows (@to be added upon

publication):

S2.2 PT parameter correlations: Additional results

This section adds some further results to the correlations amongst PT parameters

presented in the main text. I will present additional results for both Bruhin et

al. (2010), as well as presenting equivalent results for the data of L’Haridon and

Vieider (2019), for losses as well as for gains.

(a) Scatter plot of γ̂+ and δ̂+ (b) Scatter plot of γ̂− and δ̂−

Figure S8: Scatter plot of PT parameters γ̂ and δ̂
The parameters have been obtained from the estimation of a PT model plus additive noise.
The different colours and shapes represent the 3 experiments in Bruhin et al. (2010): ZH03
stands for Zurich 03; ZH6 for Zurich 06; and BJ05 for Beijing 05.

I start by presenting correlations between additional PT parameters in the

Bruhin et al. (2010) data. Another interesting pattern emerges from the relation

between likelihood-sensitivity and optimism for gains, shown in figure S8 panel
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8(a), and between likelihood-sensitivity and pessimism for losses, shown in panel

8(b). In both cases, the values of δ̂ are most dispersed for small values of γ̂, with the

dispersion decreasing markedly as γ̂ increases, resulting in a funnel with the narrow

part pointing to the right. Testing the correlation of absolute deviations of δ̂ from

1 with γ̂, I find highly significant effects for both gains (ρ = −0.284, p < 0.001) and

losses (ρ = −0.264, p < 0.001). These patterns have no obvious explanation under

PT. In the BIM, however, they are predicted by the definition of δ =
(

ψ
1−ψ

)1−γ
.

That is, larger values of γ shift the attention from the prior to the likelihood, thus

compressing δ towards 1. Panel 9(a) visualizes the correlations between α̂ and γ̂

already discussed in the main text.

(a) Scatter plot of α̂ against γ̂ (b) Scatter plot of γ̂ against δ̂

Figure S9: Correlations between PT parameters in Bruhin et al. (2010)

Panel 9(b) further shows correlational patterns between γ̂ and δ̂. According

to the BIM, the results should depend on the initial value of ψ. In particular, the

larger the value of γ̂, the closer the value of δ̂ should be compressed towards 1.

This is exactly what we observe. In experiments where we observe preponderantly

values of δ̂ < 1, the distance to 1 decreases as γ̂ increases, thus resulting in a

positive correlation between the two parameters. This is the case in the Zurich

03 experiment (ρ = 0.262, p < 0.001), as well as in the Zurich 06 experiment

(ρ = 0.369, p < 0.001). In the Beijing 05 experiment, on the other hand, we

observe very large values of δ̂ > 1. We may thus expect a negative relationship with

γ̂. We fail to observe such a relationship in the data (ρ = 0.045, p = 0.54). This

may be due to the fact that we have very few observations with large likelihood-

sensitivity in that experiment.
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Figure S10: Correlatiion of ω̂+ and γ̂+ in L’Haridon and Vieider (2019)

I next document correlations amongst the PT parameters in the global data

of L’Haridon and Vieider (2019), for all 30 countries and 3000 subjects. Correla-

tions are tested on parameters demeaned at the country level, corresponding to

a fixed effects specification. Figure S10 shows the correlation between noise and

likelihood-sensitivity for gains under PT. We find the usual negative correlation

already described for the risk and rationality data (ρ = −0.2, p < 0.001). At first,

the negative correlation may appear somewhat weaker than witnessed for Bruhin

et al. (2010). Closer examination reveals that this is due to the presence of a larger

number of estimates of γ̂+ > 1. As already described for utility curvature in the

main text, both negative and positive deviations tend to be correlated with noise

for parameters estimated in a PT context. Taking absolute deviations of likeli-

hood sensitivity from 1, |1 − γ̂+|, the correlation becomes indeed much stronger

(ρ = 0.386, p < 0.001).

The patterns for losses are very similar, and are shown in figure S11. Once

again, we observe a negative correlation in the global data (ρ = −0.167, p <

0.001), albeit one that is not as strong as we might have expected based on the

Bruhin et al. (2010) results. This is once again driven by the presence of values

of γ̂− > 1, which are also associated with high noise levels. Looking at the

correlations between noise and absolute deviations of the variable from 1, |1− γ̂−|,
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Figure S11: Correlatiion of ω̂− and γ̂− in L’Haridon and Vieider (2019)

the correlation thus appears much stronger (ρ = 0.445, p < 0.001).

Figure S12: Correlatiion of ω̂+ and α̂+ in L’Haridon and Vieider (2019)

Figure S12 shows the global correlation between noise and outcome sensitivity

for gains. The correlation in the global data is positive, reflecting the fact that

the median outcome sensitivity parameter is positive at 1.125. The correlation is

highly significant (ρ = 0.141, p < 0.001). Results for losses are shown in figure S13,

where the same patterns appear to be even more accentuated (ρ = 0.34, p < 0.001).
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Figure S13: Correlatiion of ω̂+ and α̂+ in L’Haridon and Vieider (2019)

S3 Separability violations under ambiguity

S3.1 Experimental details

Subjects. 48 subjects were recruited at the Melessa Lab at the University of Munich

in June 2011. Only subjects who had participated in less than 3 experiments

previously were invited. One subject was eliminated because she manifestly did

not understand the task, and alternately chose only the sure amount or only the

prospect. 38% of the subjects were male and the average age was 25 years. The

experiment was run using paper and pencil.

Experimental tasks. I presented subjects with 56 different binary prospects (28

for gains, 26 for losses, and 2 mixed prospects over gains and losses). Subjects had

to make a choice between these prospects and different sure amounts of money,

bounded between the highest and the lowest amount in the prospect. Gains were

always presented first, and losses were administered from an endowment in a

second part, the instructions for which were distributed once the first part was

finished. Prospects were always kept in a fixed order. A pilot showed that this

made the task less confusing for subjects, while no significant differences were

found in certainty equivalents for different orders. Table S2 shows the prospects

used in the usual notation (x, p; y), where p indicates the probability of winning
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or losing x, and y obtains with a complementary probability 1− p.

Table S2: Decision tasks under risk and ambiguity

Prospects are displayed in the format (p : x; y).

Notice how the exact same prospects were administered for risk (known prob-

abilities) and uncertainty (unknown or vague probabilities). This will allow me

to study ambiguity attitudes, i.e. the difference in behavior between uncertainty

and risk. Preferences were elicited using choice lists, with sure amounts changing

in equal steps between the extremes of the prospect.

Incentives. At the end of the game, one of the tasks was chosen for real

play, and then one of the lines for which a choice had to be made in that task.

This provides an incentive to reveal one’s true valuation of a prospect, and is the

standard way of incentivizing this sort of task. Subjects obtained a show-up fee

of e4. The expected payoff for one hour of experiment was above e15.

Risk and uncertainty. Risk was implemented using an urn with 8 consecutively

numbered balls. Uncertainty was also implemented using an urn with 8 balls,

except that subjects were now told that, while the balls all had a number between

1 and 8, it was possible that some balls may recur repeatedly while others could

be absent. The description as well as the visual display of the urns closely followed

the design of Abdellaoui et al. (2011). The main differences were that I ran the

experiment using paper and pencil instead of with computers; that I used numbers

instead of colours in order to allow for black and white printing; and that I ran

the experiment in sessions of 15-25 subjects instead of individually.

The decision model closely follows the one for risk used above, but with all
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parameters doubled for ambiguity. Ambiguity parameters are coded as deviations

of the equivalent parameters for risk, mostly to increase computational efficiency

and without loss of generality. All estimations are executed directly using the

density around the switching point. The model used for PT looks as follows

(@add code upon publication):
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S4 Instructions risky choice versus mirrors

First, all subjects saw the following general instructions:
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Subjects assigned to the RANDOM BOX treatment then saw the following

instructions:
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Subjects assigned to the AVERAGE BOX treatment instead saw the following

instructions:
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All subjects had to answer 6 comprehension questions as the ones shown below.

The questions served the purpose of further emphasizing the treatment:
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